Теорема гаусса индукции электрического поля. Теорема гаусса. Применение теоремы Гаусса

Введем понятие потока вектора электрической индукции. Рассмотрим бесконечно малую площадку. В большинстве случаев необходимо знать не только величину площадки, но и ее ориентацию в пространстве. Введем понятие вектор-площадка. Условимся под вектором-площадкой понимать вектор, направленный перпендикулярно площадке и численно равной величине площадки.

Рисунок 1 – К определению вектора – площадки

Назовем потоком вектора че­рез площадку
скалярное произведение векторови
. Таким образом,

Поток вектора через произвольную поверхностьнаходится интегрированием всех элементарных потоков

(4)

Если поле однородно и плоская поверхность расположена перпен­дикулярно к полю, то:

. (5)

Приведенное выражение определяет число силовых линии, пронизывающих площадку в единицу времени.

Теорема Остроградского-Гаусса. Дивергенция напряженности электрического поля

Поток вектора электрической индукции сквозь произвольную замкнутую по­верхность равен алгебраической сумме свободных электрических зарядов, охватываемых этой поверхностью

(6)

Выражение (6) представляет собой теорему О-Г в интегральном виде. Теорема 0-Г оперирует с интегральным (суммарным) эффектом, т.е. если
то неизвестно, означает ли это отсутствие зарядов во всех точках исследуемой части пространства, или, то, что сумма положительных и отрицательных зарядов, расположенных в разных точках этого пространства равны нулю.

Для нахождения расположенных зарядов и их величины по заданному полю необходимо соотношение, связывающее вектор электрической индукции в данной точке с зарядом в той же точке.

Предположим, что нам нужно определить наличие заряда в точ­ке а (рис.2)

Рисунок 2 – К расчету дивергенции вектора

Применим теорему О-Г. Поток вектора электрической индукции через произвольную поверхность, ограничивающую объем, в которой находится точка а , равен

Алгебраическую сумму зарядов в объеме можно записать в виде объемного интеграла

(7)

где - заряд, отнесенный к единице объема;

- элемент объема.

Для получения связи между полем и зарядом в точке а будем уменьшать объем, стягивая поверхность к точке а . При этом разделим обе части нашего равенства на величину . Переходя к пределу, получим:

.

Правая часть полученного выражения является по определению объемной плотностью заряда в рассмотренной точке пространства. Левая часть представляет собой предел отношения потока вектора электрической индукции через замкнутую по­верхность к объему, ограниченному этой поверхностью, когда объем стремится к нулю. Эта скалярная величина является важной характеристикой электрического поля и носит название дивергенции вектора .

Таким образом:

,

следовательно

, (8)

где - объемная плотность заряда.

При помощи этого соотношения просто решается обратная задача электростатики, т.е. нахождение распределенных зарядов по известному полю.

Если вектор задан, значит известны его проекции
,
,
на координатные оси как функции координат и для вычисления распределенной плотности зарядов, создавших заданное поле, оказывается достаточно найти сумму трех частных производных этих проекций по соответствующим переменным. В тех точках для которых
зарядов нет. В точках где
положительна, имеется положительный заряд с объемной плотностью, равной
, а в тех точках где
будет иметь отрицательное значение, находится отрицательный заряд, плотность которого также определяется значением дивергенции.

Выражение (8) представляет теорему 0-Г в дифференциальной форме. В такой форме теорема показывает, что источниками электрического поля является свободные электрические заряды; силовые линии вектора электрической индукции начинаются и заканчиваются соответственно на положительных и отрицательных зарядах.

Цель урока: Теорема Остроградского–Гаусса была установлена русским математиком и механиком Михаилом Васильевичем Остроградским в виде некоторой общей математической теоремы и немецким математиком Карлом Фридрихом Гауссом. Данная теорема может быть использована при изучении физики на профильном уровне, так как позволяет более рационально производить расчёты электрических полей.

Вектор электрической индукции

Для вывода теоремы Остроградского–Гаусса необходимо ввести такие важные вспомогательные понятия, как вектор электрической индукции и поток этого вектора Ф.

Известно, что электростатическое поле часто изображают при помощи силовых линий. Предположим, что мы определяем напряжённость в точке, лежащей на границе раздела двух сред: воздуха(=1) и воды (=81). В этой точке при переходе из воздуха в воду напряжённость электрического поля согласно формуле уменьшится в 81 раз. Если пренебречь проводимостью воды, то во столько же раз уменьшится число силовых линий. При решении различных задач на расчёт полей из-за прерывности вектора напряжённости на границе раздела сред и на диэлектриках создаются определённые неудобства. Чтобы избежать их, вводится новый вектор , который называется вектором электрической индукции:

Вектор электрической индукции равен произведению вектора на электрическую постоянную и на диэлектрическую проницаемость среды в данной точке.

Очевидно, что при переходе через границу двух диэлектриков число линий электрической индукции не изменяется для поля точечного заряда (1).

В системе СИ вектор электрической индукции измеряется в кулонах на квадратный метр (Кл/м 2). Выражение (1) показывает, что численное значение вектора не зависит от свойств среды. Поле вектора графически изображается аналогично полю напряжённости (например, для точечного заряда см. рис.1). Для поля вектора имеет место принцип суперпозиции:

Поток электрической индукции

Вектор электрической индукции характеризует электрическое поле в каждой точке пространства. Можно ввести ещё одну величину, зависящую от значений вектора не в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур) с площадью поверхности S, помещённый в однородное электрическое поле. Нормаль к плоскости проводника составляет угол с направлением вектора электрической индукции (рис. 2).

Потоком электрической индукции через поверхность S называют величину, равную произведению модуля вектора индукции на площадь S и на косинус угла между вектором и нормалью :

Вывод теоремы Остроградского–Гаусса

Эта теорема позволяет найти поток вектора электрической индукции через замкнутую поверхность, внутри которой находятся электрические заряды.

Пусть вначале один точечный заряд q помещён в центр сферы произвольного радиуса r 1 (рис. 3). Тогда ; . Вычислим полный поток индукции проходящий через всю поверхность этой сферы: ; (). Если возьмём сферу радиуса , то также Ф = q. Если проведём сферу , не охватывающую заряд q, то полный поток Ф = 0 (так как каждая линия войдёт в поверхность, а другой раз выйдет из неё).

Таким образом, Ф = q, если заряд расположен внутри замкнутой поверхности и Ф = 0, если заряд расположен вне замкнутой поверхности. Поток Ф от формы поверхности не зависит. Он также не зависит от расположения зарядов внутри поверхности. Это значит, что полученный результат справедлив не только для одного заряда, но и для какого угодно числа произвольно расположенных зарядов, если только подразумевать под q алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Теорема Гаусса: поток электрической индукции через любую замкнутую поверхность равен алгебраической сумме всех зарядов, находящихся внутри поверхности: .

Из формулы видно, что размерность электрического потока такая же, как и электрического заряда. Поэтому единицей потока электрической индукции служит кулон (Кл).

Примечание: если поле неоднородно и поверхность, через которую определяют поток, не является плоскостью, то эту поверхность можно разбить на бесконечно малые элементы ds и каждый элемент считать плоским, а поле возле него однородным. Поэтому для любого электрического поля поток вектора электрической индукции через элемент поверхности есть: =. В результате интегрирования полный поток через замкнутую поверхность S в любом неоднородном электрическом поле равен: , где q – алгебраическая сумма всех зарядов, окружённых замкнутой поверхностью S. Выразим последнее уравнение через напряжённость электрического поля (для вакуума): .

Это одно из фундаментальных уравнений Максвелла для электромагнитного поля, записанное в интегральной форме. Оно показывает, что источником постоянного во времени электрического поля являются неподвижные электрические заряды.

Применение теоремы Гаусса

Поле непрерывно распределённых зарядов

Определим теперь с помощью теоремы Остроградского-Гаусса напряжённость поля для ряда случаев.

1. Электрическое поле равномерно заряженной сферической поверхности.

Сфера радиусом R. Пусть заряд +q равномерно распределён по сферической поверхности радиуса R. Распределение заряда по поверхности характеризуется поверхностной плотностью заряда (рис.4). Поверхностной плотностью заряда называют отношение заряда к площади поверхности, по которой он распределён. . В СИ .

Определим напряжённость поля:

а) вне сферической поверхности,
б) внутри сферической поверхности.

а) Возьмём точку А, отстоящую от центра заряженной сферической поверхности на расстоянии r>R. Проведём через неё мысленно сферическую поверхность S радиуса r, имеющую общий центр с заряженной сферической поверхностью. Из соображения симметрии очевидно, что силовые линии являются радиальными прямыми перпендикулярными к поверхности S и равномерно пронизывают эту поверхность, т.е. напряжённость по всех точках этой поверхности постоянна по величине. Применим теорему Остроградского-Гаусса к этой сферической поверхности S радиуса r. Поэтому полный поток через сферу равен N = E? S; N=E. С другой стороны . Приравниваем: . Отсюда: при r>R.

Таким образом: напряжённость, создаваемая равномерно заряженной сферической поверхностью, вне её такая же, как если бы весь заряд находился в её центре (рис.5).

б) Найдём напряжённость поля в точках, лежащих внутри заряженной сферической поверхности. Возьмём точку В отстоящую от центра сферы на расстоянии . Тогда , E = 0 при r

2. Напряжённость поля равномерно заряженной бесконечной плоскости

Рассмотрим электрическое поле создаваемое бесконечной плоскостью, заряженной с плотностью , постоянной во всех точках плоскости. По соображениям симметрии можно считать, что линии напряжённости перпендикулярны к плоскости и направлены от неё в обе стороны (рис.6).

Выберем точку А, лежащую справа от плоскости и вычислим в этой точке, применяя теорему Остроградского-Гаусса. В качестве замкнутой поверхности выберем цилиндрическую поверхность таким образом, чтобы боковая поверхность цилиндра была параллельна силовым линиям, а его основания и параллельны плоскости и основание проходит через точку А (рис. 7). Рассчитаем поток напряжённости через рассматриваемую цилиндрическую поверхность. Поток через боковую поверхность равен 0, т.к. линии напряжённости параллельны боковой поверхности. Тогда полный поток складывается из потоков и проходящих через основания цилиндра и . Оба эти потока положительны =+; =; =; ==; N = 2 .

– участок плоскости лежащий внутри выбранной цилиндрической поверхности. Заряд внутри этой поверхности равен q.

Тогда ; – можно принять за точечный заряд) с точкой А. Для нахождения суммарного поля надо геометрически сложить все поля, создаваемые каждым элементом: ; .

Наиболее сложным оказывается изучение электрических явлений в неоднородной электрической среде. В такой среде ε имеет различные значения, изменяясь на границе диэлектриков скачкообразно. Предположим, что мы определяем напряжённость поля на границе раздела двух сред: ε 1 =1 (вакуум или воздух) и ε 2 =3 (жидкость – масло). На границе раздела при переходе из вакуума в диэлектрик напряжённость поля уменьшается в три раза, во столько же раз уменьшается поток вектора напряжённости (рис.12.25, а). Скачкообразное изменение вектора напряжённости электростатического поля на границе раздела двух сред создаёт определённые трудности при расчёте полей. Что касается теоремы Гаусса, то в этих условиях она вообще теряет смысл.

Так как поляризуемость и напряжённость разнородных диэлектриков различна, различным будет и число силовых линий в каждом диэлектрике. Это затруднение можно устранить, введя новую физическую характеристику поля электрическую индукцию D (или вектор электрического смещения ).

Согласно формуле

ε 1 Е 1 = ε 2 Е 2 =Е 0 =const

Умножая все части этих равенств на электрическую постоянную ε 0 получим

ε 0 ε 1 Е 1 = ε 0 ε 2 Е 2 =ε 0 Е 0 =const

Введём обозначение ε 0 εЕ=D тогда предпоследнее соотношение примет вид

D 1 = D 2 =D 0 =const

Вектор D, равный произведению напряжённости электрического поля в диэлектрике на его абсолютную диэлектрическую проницаемость, называют вектором электрического смещения

(12.45)

    Единица электрического смещения – кулон на квадратный метр (Кл/м 2).

Электрическое смещение – векторная величина, её можно выразить ещё как

D = εε 0 E =(1+χ)ε 0 E = ε 0 E + χε 0 E = ε 0 E+P

(12.46)

В отличие от напряжённости Е электрическое смещение D постоянно во всех диэлектриках (рис.12.25, б). Поэтому электрическое поле в неоднородной диэлектрической среде удобно характеризовать не напряжённостью Е, а вектором смещения D . Вектором D описывается электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика, так как связанные заряды, возникающие в диэлектрики, могут вызвать, перераспределение свободных зарядов создающих поле.

Поле вектора графически изображается линиями электрического смещения точно так же, как полеизображается силовыми линиями.

Линия электрического смещения – это линии, касательные к которым в каждой точке совпадают по направлению с вектором электрического смещения.

Линии вектора Е могут начинаться и заканчиваться на любых зарядах – свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Линии вектора D в отличие от линий напряжённости непрерывны.

Так как вектор электрического смещения не испытывает разрыва на границе раздела двух сред, то все линии индукции, исходящие из зарядов, окружённых некоторой замкнутой поверхностью, пронижут её. Поэтому для вектора электрического смещения теорема Гаусса полностью сохраняет свой смысл и для неоднородной диэлектрической среды.

Теорема Гаусса для электростатического поля в диэлектрике : поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов заключенных внутри этой поверхности.

(12.47)

Рассмотрим, как меняется значение вектора Е на границе раздела двух сред, например, воздуха (ε 1) и воды (ε = 81). На­пряженность поля в воде уменьшается скачком в 81 раз. Такое по­ведение вектора Е создает определенные неудобства при расчете полей в различных средах. Чтобы избежать этого неудобства вводят новый вектор D – вектор индукции или электрического смещения поля. Связь векторов D и Е имеет вид

D = ε ε 0 Е .

Очевидно, для поля точечного заряда электрическое смещение будет равно

Нетрудно увидеть, что электрическое смещение измеряется в Кл/м 2 , не зависит от свойств и графически изображается линиями, анало­гичными линиям напряженности.

Направление силовых линий поля характеризует направле­ние поля в пространстве (силовые линии, конечно, не существуют, их вводят для удобства иллюстрации) или направление вектора на­пряженности поля. С помощью линий напряженности можно характеризовать не только направление, но и величину напряженно­сти поля. Для этого условились прово­дить их с определенной густотой, так, чтобы число линий напряженности, про­низывающих единицу поверхности, пер­пендикулярной линиям напряженности, было пропорционально модулю вектора Е (рис. 78). Тогда число линий, пронизываю­щих элементарную площадку dS, нормаль к которой n образует угол α с вектором Е , равно E dScos α = E n dS,

где E n - составляющая вектора Е по направлению нормали n . Величину dФ Е = E n dS = E dS называют потоком вектора напряженности че­рез площадку dS (dS = dS·n ).

Для произвольной замкнутой поверхности S поток вектора Е через эту поверхность равен

Аналогичное выражение имеет поток вектора электрического сме­щения Ф D

.

Теорема Остроградского-Гаусса

Эта теорема позволяет определить поток векторов Е и D от любого количества зарядов. Возьмем точечный заряд Q и определим поток вектора Е че­рез шаровую поверхность радиуса r , в центре которой он располо­жен.

Для шаровой поверхности α = 0, cos α = 1, E n = E, S = 4 πr 2 и

Ф E = E · 4 πr 2 .

Подставляя выражение для Е получим

Таким образом, из каждого точечного заряда выходит поток Ф Е вектора Е равный Q/ ε 0 . Обобщая этот вывод на общий случай про­извольного числа точечных зарядов дают формулировку теоремы: полный поток вектора Е через замкнутую поверхность про­извольной формы численно равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхно­сти, поделенной на ε 0 , т.е.

Для потока вектора электрического смещения D можно получить аналогичную формулу

поток вектора индукции через замкнутую поверхность равен алгебраической сумме электрических зарядов, охватываемых этой поверхностью.

Если взять замкнутую поверхность, не охватывающую заряд, то каждая линия Е и D будут пересекать эту поверхность дважды – на входе и выходе, поэтому суммарный поток оказывается равным нулю. Здесь необходимо учитывать алгебраическую сумму линий, входящих и выходящих.

Применение теоремы Остроградского-Гаусса для расчета элек­трических полей, создаваемых плоскостями, сферой и цилин­дром

    Сферическая поверхность радиуса R несет на себе заряд Q, равномерно распределенный по поверхности с поверхностной плотностью σ

Возьмем точку А вне сферы на расстоянии r от центра и проведем мысленно сферу радиуса r симметричную заряженной (рис. 79). Ее площадь S = 4 πr 2 . Поток вектора Е будет равен

По теореме Остроградского-Гаусса
, следовательно,
учитывая, чтоQ = σ·4 πr 2 , получим

Для точек, находящихся на поверхности сферы (R = r)

Для точек, находящихся внутри полой сферы (внутри сферы нет за­ряда), Е = 0.

2 . Полая цилиндрическая поверхность радиусом R и длиной l заряжена с постоянной поверхностной плотностью заряда
(Рис. 80). Проведем коаксиальную цилиндрическую поверхность радиусаr > R.

Поток вектора Е через эту поверхность

По теореме Гаусса

Приравнивая правые части приведенных равенств, получим

.

Если задана линейная плотность заряда цилиндра (или тонкой нити)
то

3. Поле бесконечных плоскостей с поверхностной плотно­стью заряда σ (рис. 81).

Рассмотрим поле, создаваемое бесконечной плоскостью. Из сооб­ражений симметрии вытекает, что напряженность в любой точке поля имеет направление, перпендикулярное к плоскости.

В симметричных точках Е будет одинакова по величине и противоположна по направлению.

Построим мысленно поверхность цилиндра с основанием ΔS. Тогда через каждое из оснований цилиндра будет выходить поток

Ф Е = Е ΔS, а суммарный поток через цилиндрическую поверхность будет равен Ф Е = 2Е ΔS.

Внутри поверхности заключен заряд Q = σ · ΔS. Согласно теореме Гаусса должно выполняться

откуда

Полученный результат не зависит от высоты выбранного цилиндра. Таким образом напряжённость поля Е на любых расстояниях одинакова по величине.

Для двух разноименно заряженных плоскостей с одинаковой по­верхностной плотностью заряда σ по принципу суперпозиции вне про­странства между плоскостями напряжённость поля равна нулю Е = 0, а в пространстве между плос­костями
(рис. 82а). В случае, если плоскости заряжены одноименными зарядами с одинаковой поверхностной плотностью зарядов, наблюдается об­ратная картина (рис. 82б). В пространстве между плоскостями Е=0, а в пространстве за пределами плоскостей
.

Основная прикладная задача электростатики – расчет электрических полей, создаваемых в различных приборах и аппаратах. В общем виде эта задача решается с помощью закона Кулона и принципа суперпозиции. Однако эта задача очень усложняется при рассмотрении большого числа точечных или пространственно распределенных зарядов. Еще большие трудности возникают при наличии в пространстве диэлектриков или проводников, когда под действием внешнего поля Е 0 происходит перераспределение микроскопических зарядов, создающих свое дополнительное поле Е. Поэтому для практического решения этих задач используют вспомогательные методы и приемы, использующие сложный математический аппарат. Мы рассмотрим самый простой метод, основанный на применении теоремы Остроградского – Гаусса. Чтобы сформулировать эту теорему введем несколько новых понятий:

А)плотность заряда

Если заряженное тело велико, то нужно знать распределение зарядов внутри тела.

Объемная плотность заряда – измеряется зарядом единицы объема:

Поверхностная плотность заряда – измеряется зарядом единицы поверхности тела (когда заряд распределяется по поверхности):

Линейная плотность заряда (распределение заряда вдоль проводника):

б) вектор электростатической индукции

Вектором электростатической индукции (вектором электрического смещения) называется векторная величина, характеризующая электрическое поле.

Вектор равен произведению векторана абсолютную диэлектрическую проницаемость среды в данной точке:

Проверим размерность D в системе единиц СИ:

, т.к.
,

то размерности D и Е не совпадают, а также различны и их численные значения.

Из определения следует, что для поля вектораимеет место тот же принцип суперпозиции, как и для поля:

Поле графически изображается линиями индукции, точно так же как и поле . Линии индукции проводятся так, что касательная в каждой точке совпадает с направлением , а число линий равно численному значениюD в данном месте.

Чтобы понять смысл введения рассмотрим пример.

ε> 1

на границе полости с диэлектриком концентрируются связанные отрицательные заряды и поля уменьшается враз и скачком уменьшается густота.

Для этого же случая:D = Eεε 0

, тогда: линииидут непрерывно. Линииначинаются на свободных зарядах (уна любых – связанных или свободных), и на границе диэлектрика их густота остается неизменной.

Таким образом – непрерывность линий индукции значительно облегчает вычисление , а, зная связьсможно найти вектор.

в) поток вектора электростатической индукции

Рассмотрим в электрическом поле поверхность S и выберем направление нормали

1. Если поле однородно, то число силовых линий через поверхность S:

2. Если поле неоднородно, то поверхность разбивают на бесконечно малые элементы dS, которые считают плоскими и поле возле них однородным. Поэтому поток через элемент поверхности равен: dN = D n dS,

а полный поток через любую поверхность:

(6)

Поток индукции N – величина скалярная; в зависимости от  может быть > 0 или < 0, или = 0.