Скорость течения реки. Зависимость скорости течения от рельефа реки лена Как на реке меняется скорость течения

Рассмотрим случай, когда невязкая жидкость течет по горизонтальной цилиндрической трубе с изменяющимся поперечным сечением.

Течение жидкости называют стационарным , если в каждой точке пространства, занимаемого жидкостью, ее скорость с течением времени не изменяется. При стационарном течении через любое поперечное сечение трубы за равные промежутки времени переносятся одинаковые объемы жидкости.

Жидкости практически несжимаемы , т. е. можно считать, что данная масса жидкости всегда имеет неизменный объем. Поэтому одинаковость объемов жидкости, проходящих через разные сечения трубы, означает, что скорость течения жидкости зависит от сечения трубы.

Пусть скорости стационарного течения жидкости через сечения трубы S 1 и S 2 равны соответственно v 1 и v 2 . Объем жидкости, протекающей за промежуток времени t через сечение S 1 , равен V 1 =S 1 v 1 t, а объем жидкости, протекающей за то же время через сечение S2, равен V 2 =S 2 v 2 t. Из равенства V 1 =V 2 следует, что

S 1 V 1 =S 2 V 2 . (5.10)

Соотношение (5.10) называют уравнением неразрывности . Из него следует, что

v 1 /v 2 =S 2 /S 1 .

Следовательно, при стационарном течении жидкости скорости движения ее частиц через разные поперечные сечения трубы обратно пропорциональны площадям этих сечений.

Согласно второму закону Ньютона, причиной ускорения является сила. Этой силой в данном случае является разность сил давления, действующих на текущую жидкость в широкой и узкой частях трубы. Следовательно, б широкой части трубы давление жидкости должно быть больше, чем в узкой. Это можно непосредственно наблюдать на опыте. На рис. показано, что на участках разного поперечного сечения S 1 и S 2 в трубу, по которой течет жидкость, вставлены манометрические трубки.

Как показывают наблюдения, уровень жидкости в манометрической трубке у сечения S 1 трубы выше, чем у сечения S 2 . Следовательно, давление в жидкости, протекающей через сечение с большей площадью S 1 , выше, чем давление в жидкости, протекающей через сечение с меньшей площадью S 2 . Следовательно, при стационарном течении жидкости в тех местах, где скорость течения меньше, давление в жидкости больше и, наоборот, там, где скорость течения больше, давление в жидкости меньше. К этому выводу впервые пришел Бернулли, поэтому данный закон называется законом Бернулли.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

ρ - плотность жидкости,

v - скорость потока,

h - высота, на которой находится рассматриваемый элемент жидкости,

p - давление.

Константа в правой части обычно называется напором , или полным давлением. Размерность всех слагаемых - единица энергии, приходящейся на единицу объёма жидкости.

Это соотношение называют уравнением Бернулли . Величина в левой части имеет отношение к интегралу Бернулли.

Для горизонтальной трубы h = const и уравнение Бернулли принимает вид.

Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока. Полное давление состоит из весового, статического и динамического давления. Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров, водо- и пароструйных насосов.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела всегда в точности равна нулю.

Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда.

Согласно закону Бернулли приравняем полные давления на верхней поверхности жидкости и на выходе из отверстия:

p 0 - атмосферное давление,

h - высота столба жидкости в сосуде,

v - скорость истечения жидкости.

Отсюда: . Это - формула Торричелли. Она показывает, что при истечении идеальной несжимаемой жидкости из отверстия в широком сосуде жидкость приобретает скорость, какую получило бы тело, свободно падающее с высоты h .

При движении жидкости в круглой трубе скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая течение ламинарным, найдем закон изменения скорости с расстоянием от оси трубы.

Выделим воображаемый цилиндрический объем жидкости радиуса и длины l (рис. 77.1). При стационарном течении в трубе постоянного сечения скорости всех частиц жидкости остаются неизменными. Следовательно, сумма внешних сил, приложенных к любому объему жидкости, равна нулю. На основания рассматриваемого цилиндрического объема действуют силы давления, сумма которых равна Эта сала действует в направлении движения жидкости. Кроме того, на боковую поверхность цилиндра действует сила трения, равная (Имеется в виду значение на расстоянии от оси трубы). Условие стационарности имеет вид

Скорость убывает с расстоянием от оси трубы. Следовательно, отрицательна и Учтя это, преобразуем соотношение (77.1) следующим образом:

Разделив переменные, получим уравнение:

Интегрирование дает, что

Постоянную интегрирования нужно выбрать так, чтобы скорость обращалась в нуль на стенках трубы, т. е. - радиус трубы).

Из этого условия

Подстановка значения С в (77.2) приводит к формуле

Значение скорости на оси трубы равно

С учетом этого формуле (77.3) можно придать вид

Таким образом, при ламинарном течении скорость изменяется с расстоянием от оси трубы по параболическому закону (рис. 77.2).

При турбулентном течении скорость в каждой точке меняется беспорядочным образом. При неизменных внешних условиях постоянной оказывается средняя (по времени) скорость в каждой точке сечения трубы. Профиль средних скоростей при турбулентном течении изображен на рис. 77.3. Вблизи стенок трубы скорость изменяется гораздо сильнее, чем при ламинарном течении, в остальной же части сечения скорость изменяется меньше.

Полагая течение ламинарным, вычислим поток жидкости Q, т. е. объем жидкости, протекающий через поперечное сечение трубы за единицу времени. Разобьем поперечное сечение трубы на кольца ширины (рис. 77.4). Через кольцо радиуса пройдет за секунду объем жидкости, равный произведению площади кольца на скорость течения в точках, находящихся на расстоянии от оси трубы.

Приняв во внимание формулу (77.5), получим:

Чтобы получить поток Q, нужно проинтегрировать выражение (77.6) по в пределах от нуля до R: я 9

Площадь сечения трубы). Из формулы (77.7) следует, что при ламинарном течении среднее (по сечению) значение скорости равно половине значения скорости на. оси трубы.

Подставив в (77.7) значение (77.4) для

Получим для потока формулу

Эта формула называется формулой Пуазейля. Согласно (77.8) поток жидкости пропорционален перепаду давления на единице длины трубы, пропорционален четвертой степени радиуса трубы и обратно пропорционален коэффициенту вязкости жидкости. Напомним, что формула Пуазейля применима только при ламинарном течении.

Соотношение (77.8) используется для определения вязкости жидкостей. Пропуская жидкость через капилляр известного радиуса и измеряя перепад давления и поток Q, можно найти


Скорости течения в реках неодинаковы в различных точках потока: они изменяются и по глубине, и по ширине живого сечения. Наименьшие скорости наблюдаются у дна, что связано с влиянием шероховатости русла. От дна к поверхности нарастание скорости сначала происходит быстро, а затем замедляется, и максимум в открытых потоках достигается у поверхности или на расстоянии 0,2H от поверхности. Кривые изменения скоростей по вертикали называются годографами илиэпюрами скоростей . На распределение скоростей по вертикали большое влияние оказывают неровности в рельефе дна, ледяной покров, ветер и водная растительность. При наличии на дне неровностей (возвышения, валуны) скорости в потоке перед препятствием резко уменьшаются ко дну. Уменьшаются скорости в придонном слое при развитии водной растительности, значительно повышающей шероховатость дна русла. Зимой подо льдом под влиянием добавочного трения о шероховатую поверхность льда скорости малы. Максимум скорости смещается к середине глубины и иногда ко дну. При ветре против течения скорости у поверхности уменьшаются, а положение максимума смещается на бОльшую глубину по сравнению с его положением в безветренную погоду.

У берегов скорость меньше, в центре потока больше. Линии, соединяющие точки на поверхности реки с наибольшими скоростями, называются стрежнем . Знание положения стрежня имеет большое значение при использовании рек для целей водного транспорта и лесосплава. Наглядное представление о распределении скоростей в живом сечении можно получить построением изотах – линий, соединяющих точки с одинаковыми скоростями.

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Выделим в потоке объем воды, ограниченный двумя сечениями ω. Величина объема V = ωΔx, где Δx – расстояние между сечениями. Объем находится под влиянием равнодействующей силы гидродинамического давления P, действия силы тяжести F’ и силы сопротивления (трения) T. Сила гидродинамического давления P=0, так как силы давления P 1 и P 2 при равенстве сечений и постоянном уклоне уравновешиваются. Т.о., V ср = C , где H – средняя глубина, I – уклон. – Уравнение Шези. Формула Манинга: . Формула Н. Н. Павловского: , где n – коэффициент шероховаточти, находится по специальным таблицам М. Ф. Срибного.

Движения воды в реках. Виды движения.

Вода в реках движется под действием силы тяжести F’. Эту силу можно разложить на две составляющие: параллельную дну F’ x и нормальную ко дну F’ y . Сила F’ y уравновешивается силой реакции со стороны дна. Сила F’ x , зависящая от уклона, вызывает движение воды в потоке. Эта сила, действуя постоянно, должна бы вызывать ускорение движения. Этого не происходит, так как она уравновешивается силой сопротивления, возникающей в потоке в результате внутреннего трения между частицами воды и трения движущейся массы воды о дно и берега. Изменение уклона, шероховатости дна, сужения и расширения русла вызывают изменения соотношения движущей силы и силы сопротивления, что приводит к изменению скоростей течения по длине реки и в живом сечении.

Виды движения в потоках :

1) равномерное ,

2) неравномерное ,

3) неустановившееся .

При равномерном движении скорости течения, живое сечение, расход волны постоянны по длине потока и не меняются во времени. Такого рода движение можно наблюдать в каналах с призматическим сечением. При неравномерном уклон, скорости, живое сечение не изменяются в данном сечении во времени, но изменяются по длине потока. Этот вид движения наблюдается в реках в период межени при устойчивых расходах воды в них, а также в условиях подпора, образованного плотиной. Неустановившееся движение – это такое, при котором все гидравлические элементы потока (уклоны, скорости, площадь живого сечения) на рассматриваемом участке изменяются и во времени, и по длине. Неустановившееся движение характерно для рек во время прохождения половодий и паводков.

При равномерном движении уклон поверхности потока I равен уклону дна i и водная поерхность параллельна выровненной поверхности дна. Неравномерное движение может быть замедленным и ускоренным. При замедляющемся течении вниз по реке кривая свободной водной поверхности принимает форму кривой подпора. Поверхностный уклон становится меньше уклона дна (I), и глубина возрастает в направлении течения. При ускоряющемся течении кривая свободной поверхности потока называется кривой спада; глубина убывает вдоль потока, скорость и уклон возрастают (I>i ).

Рейнольдса число, один из подобия критериев для течений вязких жидкостей и газов, характеризующий соотношение между инерционными силами и силами вязкости: Re =rvl /m, где r - плотность, m - динамический коэффициент вязкости жидкости или газа, v - характерная скорость потока, l - характерный линейный размер. Так, при течении в круглых цилиндрических трубах обычно принимают l = d , где d - диаметр трубы, а v = v cp , где v cp - средняя скорость течения; при обтекании тел / - длина или поперечный размер тела, а v = v ¥ , где v ¥ - скорость невозмущённого потока, набегающего на тело. Назван по имени О. Рейнольдса.

От Р. ч. зависит также режим течения жидкости, характеризуемый критическим Р. ч. Re . При R <Re kр возможно лишь ламинарное течение жидкости, а при Re > Re kр течение может стать турбулентным. Значение Re kр зависит от вида течения. Например, для течения вязкой жидкости в круглой цилиндрической трубке Re kр = 2300.

Распределение скоростей течения в речном потоке.

Одной из особенностей движения частиц воды в реках являются нерегулярные случайные изменения скоростей. Непрерывные изменения направления и величины скоростей в каждой точке турбулентного потока называются пульсацией. Чем больше скорость, тем больше турбулентная пульсация. Тогда в каждой точке потока и в каждый момент времени мгновенная скорость течения – это вектор. Его можно разложить на составляющие в прямоугольной системе координат (υ x , υ y , υ z,), они тоже будут пульсирующими. Большинством гидрометрических приборов измеряется продольная составляющая скорости (υ x), осредненная за некоторый интервал времени (на практике 1-1,5 минуты).

Скорости меняются по глубине и ширине живого сечения реки. На каждой отдельно взятой вертикали наименьшая скорость отмечается у дна, что зависит от шероховатости русла. К поверхности скорость растет до величины средней по вертикали на глубине 0,6h, а максимум отмечается на поверхности или на расстоянии 0,2h от поверхности, в открытом русле. График изменения скорости по глубине называется годографом (эпюрой скоростей).

Распределение скорости по глубине зависит от рельефа дна, наличия ледяного покрова, ветра и водной растительности. Наличие валунов, больших камней и водной растительности у дна приводит к резкому уменьшению скорости в придонном слое. Ледяной покров и шуга также уменьшают скорость, но в слое воды подо льдом. Средняя скорость на вертикали определяется делением площади эпюры на глубину вертикали.

По ширине потока скорость повторяет в основном изменение глубины – от берегов скорость увеличивается к средине. Линия, соединяющая точки с наибольшими скоростями по длине реки, называется стрежень (линия наибольших глубин).

Распределение скоростей в плане можно отразить изотахами – линиями, соединяющими точки с равными скоростями в живом сечении.

Линия, соединяющая вдоль реки точки отдельных живых сечений с максимальными скоростями, называется динамической осью потока.



Гидрология 2012

ЛЕКЦИЯ 8. СПЕЦИАЛЬНЫЕ ВОПРОСЫ ГИДРОЛОГИИ РЕК И ВОДОЕМОВ

Вопросы:

    Движение воды в реках

    Движение наносов в реках

    Русловые процессы

    Термический и ледовый режим рек и водоемов

    Озера и их морфометрические характеристики

1. Движение воды в реках.

Движение воды в реках происходит под действием силы тяжести при наличии продольного уклона или напора. Скорость течения зависит от соотношения горизонтальной составляющей силы тяжести, определяемой уклоном и разностью напоров, и силы трения, определяемой взаимодействием между частицами внутри потока и частицами и дном.

Для рек характерен турбулентный режим движения воды, отличительной особенностью которого является пульсация скорости или изменение ее во времени в каждой точке по значению и направлению относительно среднего значения.

Вследствие неравномерности потерь по ширине русла скорости течения распре­делены в речном потоке неравномерно: наибольшие скорости на­блюдаются на поверхности потока над наиболее глубокой частью русла, наименьшие - у дна и берегов. В наиболее часто встречающихся условиях закономерном распределении скоростей течения эпюра (график распределения) средних скоростей по глубине речного потока имеет максимум (u max) вблизи поверхности, скорость, близ­кую к средней на вертикали,- на глубине 0,6h от дна (h - полная глубина) и минимум (u min), не равный нулю,- у дна (рис. 8.1, а).

Рис. 8.1. Вертикальное распределение скоростей течения в речном потоке:

а - типичное; 6-под ледяным покровом; в - под слоем внутриводного льда (шуги); г - при попутном и встречном ветре; д- при влиянии растительности; е - при влиянии неровностей дна; 1 -ледяной покров; 2-слой шуги; V-направление ветра; u max - максимальная скорость течения; - обратное течение

Однако под влиянием ледяного покрова, ветра, растительности, неровностей рельефа дна и берегов это распределение скоростей нарушается (рис. 8.1, б - e ).

Среднюю скорость течения в поперечном сечении v рассчиты­вают по известным расходу воды - Q и площади поперечного сечения -  по формуле: v=Q/.

Наиболее простые закономерности наблюдаются при равномерном движении жидкости в русле, близком к прямолинейному. В этом случае средняя скорость течения в русле может описана формулой Шези.

, (8.1)

где C – коэффициент Шези;

h ср – средняя глубина в русле, м;

I – уклон водной поверхности.

При сотношении ширины русла (В) и средней глубины (h ср) менее 10 вместо h ср используют гидравлический радиус R = / ( - площадь живого сечения, - смоченный периметр).

Коэффициент Шези вычисляют по эмпирическим формулам, среди которых наиболее распространены

формула Маннинга (для рек):

C=h ср 1/6 /n. (8.2)

формула Павловского (для искусственных водотоков – каналов, канав):

C=(1/n) R y /n (8.3)

y = 0,37+2,5
- 0,75(
-0,1) 
,

где n – коэффициент шероховатости, который находят по специальным таблицам (в России – по таблицам Срибного, Карасева, в США – таблицам Бредли).

Для ровных незаросших русел с песчаным дном п = 0,020 - 0,023; для извилистых русел с неров­ным дном n= 0,023-0,033; для пойм, заросших кустарником, п = 0,033 - 0,045.

Формула Шези показывает, что скорость течения в речном потоке тем больше, чем больше глубина русла и уклон водной поверхности и меньше шероховатость русла.

Путем умножения обеих частей формулы Шези на площадь поперечного сечения  с учетом формулы (8.1) можно получить формулу для определения расхода воды:

. (8.4)

Если морфометрические харак­теристики речного потока изменяются по длине реки, то движение речного потока будет неравномерное и скорость течения будет изменяться вдоль реки. На небольшом участке реки, где расход не меняется из закона сохранения массы вещества можно записать уравнение непрерывности

1 v 1 =  2 v 2 = Q = const . (8.5)

Отсюда следует, что увеличение площади поперечного сечения вдоль реки (от створа 1 к створу 2) повлечет за собой уменьшение на данном участке скорости течения, как, например, в межень на плесе, уменьшение же площади поперечного сечения вдоль реки приведет к увеличению на этом участке скорости течения, как, например, в межень на перекате.

В случае неравномерного движения уклон водного зеркала уже не будет равен уклону дна, поэтому вдоль реки могут наблюдаться явления подпора (увеличения глубины воды с увеличением расстояния) или явления спада (уменьшения глубины с увеличением расстояния). Причиной неравномерного движения могут быть различные сооружения, возводимые в русле реки – плотины, дамбы, мостовые переходы, спрямление и расчистка русел рек.

Более сложные случаи движения возникают на повороте русла, где наряду с силой тяжести на скорость течения влияет центробежная сила.Этоприводит к отклонению течения в поверхностных слоях в сторону вогнутого берега, что создает поперечный перекос уровня воды. В результате избытка гидростатического давления у вогнутого берега в придонных слоях возникает течение, направленное в сторону выпуклого берега. Скла­дываясь с основным продольным переносом воды в реке, разно­направленные течения на поверхности и у дна создают спирале­видное движение воды на изгибе речного русла - поперечную цир­куляцию (рис.8.2).

Рис.8.2. Схема поперечной циркуляции на изгибе речного потока в плане (а) и поперечном разрезе (б) и схема действующих сил (в):

1 – поверхностные струи; 2)придонные струи.

Поперечный уклон (I поп = sin ), который возникает на повороте русла, может определен по формуле

. (8.6)

где v -средняя скорость течения;

g – ускорение свободного падения, м/с2;

r - радиус изгиба русла.

Величина перекоса уровня между обо­ими берегами (H поп ) равна

H поп = I поп В , (8.7)

где В - ширина русла.

Пример . При скорости v=1 м/с, r=100 м, B=50 м, величина I поп =0,001, H поп = 0,05 м.

Наряду с силой тяжести, силой трения и центростремительной силой на частицы жидкости действует отклоняющая сила вращения Земли.

Вследствие суточного вращения Земли с угловой скоростью =2/86400 = 0,0000729 рад/с, всякая материальная точка, движущаяся относительно Земли со скоростью v , испытывает добавочное ускорение ().Сила, соответствующая данному ускорению, называется силой Кориолиса (F кориол), и равна

F кориол =m г =2 mvsin. (8.8)

Сила Кориолиса направлена в северном полушарии под прямым углом вправо к направлению движения частицы, в южном полушарии – влево.

Поперечный уклон, вызываемой силой Кориолиса, равен

I кориол = v sin/67200, (8.9)

Для северной широты =45 sin=0,707 I кориол= v/95000, при v=1 м/с I кориол =1,0510 -5 . При ширине реки B=50 м перепад уровня H=0,00052 м (0,05 см), что в 100 раз меньше уклона за счет центробежной силы. Наиболее сильно влияние силы Кориолиса проявляется для больших рек (Волга, Днепр, Енисей, Обь и др), что было в свое время обнаружено русским академиком, естествоиспытателем К.Бэром. Однако, из-за своей малости сила Корриолиса, не учитывается в гидравлических расчетах.

    Движение наносов в реках

Наряду с водой в реках движутся наносы и растворимые примеси. Главными источниками поступления наносов в реки служат поверхность водосборов, подвергающаяся эрозии или процессу разрушения почв и грунтов текущей водой и ветром в период дождей и снеготаяния, и сами русла рек, размываемые речным потоком.

Эрозия поверхности водосборов - процесс сложный, зависящий как от эродирующей способности стекающих по его поверхности дожде­вых и талых вод, так и от противоэрозионной устойчивости почв и грунтов водосбора. Эрозия поверхности водосборов (и поступле­ние ее продуктов в реки) обычно тем больше, чем сильнее дожди и интенсивнее снеготаяние, чем больше неровности рельефа, рых­лее грунты (наиболее легко подвергаются эрозии лёссовые грунты), менее развит растительный покров, сильнее распаханность скло­нов. Эрозия речных русел тем сильнее, чем больше скорости тече­ния в реках и менее устойчивы грунты, слагающие дно и берега. Часть наносов поступает в русло рек при абразии (волновом раз­рушении) берегов водохранилищ и речных берегов на широких плесах. Наносы, слагающие дно рек, называют донными отложени­ями, или аллювием.

Наиболее важные характеристики наносов следующие:

    геомет­рическая крупность, выражающаяся через диаметр частиц наносов (D мм);

    гидравлическая крупность, т. е. скорость осаждения частиц наносов в неподвижной воде (w, мм/с, мм/мин);

    плотность частиц (р н, кг/м 3), равная для наиболее распространенных кварцевых песков2650 кг/м 3 ;

    плотность отложений (плотность грунта) (р отл, кг/м 3), зависящая от плотности частиц и пористости грунта согласно формуле (плотность илистых отложений на дне рек обычно составляет в среднем 700-1000 кг/м 3 , песчаных 1500-1700, сме­ шанных 1000-1500 кг/м 3);

    концентрация (содержание) наносов в потоке, которую можно представить как в относительных величинах (отношение массы или объема наносов к массе или объему воды), гак и в абсолютных величинах; в последнем случае используют понятие мутность воды (s, г/м 3 , кг/м 3), которая вычисляется по формуле

где m- масса наносов в пробе воды; V- объем пробы воды. Мутность определяют путем фильтрования отобранных с помощью питометров проб воды и взвешивания фильтров.

Наибольшую концентрацию наносов (мутность воды) имеют реки с паводочным режимом и протекающие в условиях засушливого климата и легкоразмываемых грунтов. Самые мутные реки на Зем­ле - Терек, Сулак, Кура, Амударья, Ганг, Хуанхэ. Средняя годовая мутность рек Терека, Амударьи и Хуанхэ в условиях естественного режима составляла, например, 1,7; 2,9 и 25,8 кг/м 3 соответственно. В половодье мутность воды Хуанхэ достигала 250 кг/м 3 ! В насто­ящее время мутность перечисленных рек стала заметно меньше. Для сравнения приведем данные о средней годовой мутности воды в Волге в ее низовьях: до зарегулирования реки она была равна около 60 г/м 3 , а после зарегулирования уменьшилась до 25-30 г/м 3 .

По характеру перемещения в реках наносы разделяют на два основных типа - взвешенные и влекомые. Промежуточным типом являются сальтирующие наносы, движущиеся скачкообразно в при­донном слое; наносы этой промежуточной группы условно объеди­няют с влекомыми.

Влекомые наносы - это наносы, перемещающиеся речным пото­ком в придонном слое и движущиеся скольжением, перекатывани­ем или сальтацией. Путем влечения по дну перемещаются наиболее крупные частицы наносов (песок, гравий, галька, валуны).

Таким образом, критерием начала движения влекомых наносов в реках является условие

(8.11)

где u дно - фактическая придонная скорость течения.

Между «начальной скоростью» и объе­мом или весом перемещающихся частиц:

F g ~D"~u 6 дно0 . (8.12)

Эта формула получила название закона Эри, утверждающего, что вес влекомых наносов пропорционален шестой степени скорости течения. Из формулы Эри следует, что увеличение скорости тече­ния, например в 2, 3, 4 раза, приводит к увеличению веса переме­щающихся по дну частиц наносов соответственно в 64, 729, 4096 раз. Это как раз и объясняет, почему на равнинных реках с малыми скоростями течения поток может переносить по дну лишь песок, а на горных с большими скоростями - гальку и даже огромныевалуны. Для перемещения по дну песка необходимы придонные скорости течения не менее 0,10-0,15 м/с, гравия - не менее 0,15- 0,5, гальки - 0,5-1,6, валунов - 1,6-5 м/с. Средняя скорость по­тока должна быть еще больше.

Влекомые наносы могут перемещаться по дну рек либо сплош­ным слоем, либо в виде скоплений, т. е. дискретно. Второй харак­тер движения для рек наиболее типичен. Скопления влекомых наносов представлены донными грядами различного размера (рис. 8.3). Наносы перемещаются слоем по верховому склону гряды и скатываются по низовому склону (его наклон близок к углу естественного откоса) в подвалье гряды. Здесь частицы наносон могут быть «захоронены» надвигающейся грядой и вновь придут в движение лишь после смещения гряды на всю ее полную длину.

Рис.8.3. Донные гряды на дне реки в два последовательных момента времени (1 и 2).

Взвешенные наносы переносятся в толще речного потока. Усло­вием такого перемещения служит соотношение

u + z  w, (8.13)

где u + z - направленная вверх вертикальная составляющая вектора скорости течения в данной точке потока; w - гидравлическая круп­ность частицы наносов.

Важнейшие характеристики при дви­жении взвешенных наносов в реках - это мутность воды s, определяемая по формуле (8.10), и расход взвешенных наносов:

R=10 -3 sQ, (8.14)

где R в кг/с, s в г/м 3 , Q в м 3 /с.

Взвешенные наносы распределены в речном потоке неравномерно: в при­донных слоях мутность максимальна и уменьшается по направлению к по­верхности, причем для взвешенных на­носов более крупных фракций быстрее, для наносов мелких фракций - медлен­нее.

Наряду со стоком воды в гидрологии определяют сток наносов.Сток наносов реки включает сток взвешенных и сток влекомых наносов, причем главная роль обычно принадлежит взвешенным наносам. Считается, что на долю влекомых наносов приходится в среднем лишь 5-10% стока взвешенных наносов рек, причем с увеличением размера реки эта доля, как правило, уменьшается.

Предельный суммарный расход как взвешенных, так и влеко­мых наносов, которые может при данных условиях переносить река, называют транспортирующей способностью потока R тр. Согласно теоретическим и экспериментальным исследованиям R тр зависит прежде всего от скоростей течения и расхода воды:

(8.15)

где s тр - мутность воды, соответствующая транспортирующей спо­собности потока;

v -средняя скорость потока;

h cp - средняя глубина;

w - средняя гидравлическая крупность частиц наносов.

В нашей стране и за рубежом предложено много разных формул вида (8.15). При этом мутность воды s тр, соответствующую транс­портирующей способности потока (т. е. предельно возможную мут­ность при данных гидравлических условиях), часто выражают как функцию средней скорости течения: s rp = av n , где а и n - парамет­ры, причем n изменяется от 2 до 4.

В реальных условиях фактический расход наносов в реке и транспортирующая способность потока могут не совпадать, что и становится причиной русловых деформаций.

Сток наносов реки (прежде всего взвешенных наносов) обычно рассчитывают по построенным на основе измерений связям расхо­да воды и расхода взвешенных наносов R=f(Q). У такой связи имеются две важные особенности: она нелинейна, причем R растет быстрее, чем Q; очень приближенно эту зависимость иногда можно записать в виде степенного уравнения:

R = kQ m , (8.15)

где, по Н. И. Маккавееву, n = 2 3 .

Очень часто связь между R и Q оказывается неоднозначной (петлеобразной). Это объясняет­ся несовпадением изменения в реках расходов воды и расходов наносов во времени (рис. 6.18). Максимальная мутность воды в ре­ках (и максимальные расходы наносов тоже) обычно опережают максимальный расход воды, поскольку наиболее активный смыв грунтов с поверхности водосбора идет в период подъема паводка или половодья.

Рис. 8.4. Типичные графики изменения расходов воды и взвешенных наносов (а) и связи между ними (б): 1 - подъем половодья; 2 -спад половодья

С помощью графика связи R = f (Q ) по известным средним су­точным значениям Q легко определить и соответствующие величи ны R.

Средние расходы наносов за любой период R определяют точно так же, как и средние расходы воды. Сток наносов рассчитывают по формуле:

W н = RT, (8.16)

где сток наносов W н, кг; средний расход наносов R, кг/с; интервал времени T, с.

Сток наносов чаще удобнее представить не в кило­граммах, а в тоннах или даже в миллионах тонн. В этих случаях применяют формулы

W н (т)= RT 10 -3 , (8.17)

Если речь идет о годовых величинах, то записы­вают

W н (млн т) = R 31,510 -3 . (8.18)

Модулем стока наносов называют сток наносов в тоннах с 1 км 2 площади водосбора (A):

M H =Wн/A. (8.19)

Для годовых величин стока наносов получим М н, т/км 2:

М н = R31,510 3 /F. (8.20)

Модуль стока наносов характеризует эрозионную деятельность речных потоков (напомним, однако, что фактическая денудация в бассейнах рек во много раз больше модуля стока наносов, рас­считанного только что описанными способами, так как огромное количество смытых со склонов наносов не попадает в реки, а от­лагается у подножья склонов, в устьях балок, оврагов, малых при­токов, на поймах.

Модуль стока взвешенных наносов и средняя мутность воды рек, так же как и модуль стока воды, неравномерно распределены по территории. Так, на севере Европейской территории России (тундра, лесная зона) он часто не превышает 1-2 т/км 2 в год, в северной и западных частях Европейской равнины повышается до 10-20 т/км 2 . На юге Европейской территории бывшего СССР он достигает 50-100 т/км 2 , а в ряде районов Кавказа - даже 500 т/км 2 в год. Для бассейнов некоторых рек мира модуль стока взвешенных наносов в естественных условиях стока составлял: у Волги - 10,3 т/км 2 , Дуная- 63,6, Терека - 350, Хуанхэ- 1590 т/км 2 в год. Мутность рек довольно закономерно распределяется по территории. Так, например, средняя годовая мутность рек на севере Европейской части России весьма невелика – 10-50 г/м 3 , в бассейнах Оки, Днепpa, Дона увеличивается до 150-500 г/м 3 , на Северном Кавказе иногда превышает 1000 г/м 3 .

Из суммарного годового стока наносов всех рек мира (15700 млн. т) наибольшая доля в естественных условиях приходится на Амазонку (1200 млн т), Хуанхэ (1185 млн т), Ганг с Брахмапутрой (1060 млн т), Янцзы (471 млн т), Миссисипи (400 млн т) (см. табл. 6.1). Среди наиболее мутных рек на планете - Хуанхэ (средняя годовая мутность воды более 25 кг/м 3 , а максимальная - в 10 раз больше), Инд, Ганг, Янцзы, Амударья, Терек.

На вопрос Река Лена. Зависимость Скорости течения от рельефа заданный автором Проституировать лучший ответ это Основные сведения
Протяжённость - 4 400 км, площадь бассейна - 2 490 тыс. км². Основное питание, так же как и почти всех притоков, составляют талые снеговые и дождевые воды. Повсеместное распространение вечной мерзлоты мешает питанию рек грунтовыми водами, исключением являются только геотермальные источники. В связи с общим режимом осадков для Лены характерны весеннее половодье, несколько довольно высоких паводков летом и низкая осенне-зимняя межень до 366 м³/с в устье. Весенний ледоход отличается большой мощью и часто сопровождается большими заторами льда. Наибольший среднемесячный расход воды в устье наблюдался в июне 1989 года и составлял 104 000 м³/с, максимальный расход воды в устье во время паводка может превышать 250 000 м³/с. В многолетнем разрезе максимальный расход реки в 530 раз больше минимального.
Гидрографические данные по расходу воды в устье Лены в разных источниках противоречат друг другу и зачастую содержат ошибки. Для реки характерны периодические значительные увеличения годового стока, которые случаются не по причине большого количества осадков в бассейне, а в первую очередь по причине интенсивного таяния наледей и вечной мерзлоты в нижней части бассейна. Такие явления имеют место в ходе теплых лет на севере Якутии и приводят к значительному увеличению стока. Так, например, в 1989 году среднегодовой расход воды составил 23 624 м³/с, что соответствует 744 км³ в год. За 67 лет наблюдений на станции «Кюсюр» вблизи устья среднегодовой расход воды составляет 17 175 м³/с или 541 км³ в год, имел минимальное значение в 1986 году - 13 044 м³/с.
По характеру течения реки различают три её участка: от истока до устья Витима; от устья Витима до места впадения Алдана и третий нижний участок - от впадения Алдана до устья.
[править] Верхнее течение
Истоком Лены считается небольшое болото в 12 километрах от Байкала, расположенное на высоте 1 470 метров. Всё верхнее течение Лены до впадения Витима, то есть почти третья часть её длины, приходится на горное Предбайкалье. Расход воды в районе Киренска - 1 100 м³/сек.
[править] Среднее течение
К среднему течению относят её отрезок между устьями рек Витима и Алдана, длиной 1 415 км. Близ впадения Витима Лена вступает в пределы Якутии и протекает по ней до самого устья. Приняв Витим, Лена превращается в очень большую многоводную реку. Глубины возрастают до 10-12 м, русло расширяется, и в нём появляются многочисленные острова, долина расширяется до 20-30 км. долина асимметрична: левый склон положе; правый, представленный северным краем Патомского нагорья, круче и выше. По обоим склонам растут густые хвойные леса, лишь иногда сменяемые лугами.
От Олёкмы до Алдана Лена не имеет ни одного значительного притока. Более 500 км Лена течёт в глубокой и узкой долине, врезанной в известняки. Ниже посёлка Покровска происходит резкое расширение долины Лены. Сильно замедляется скорость течения, она нигде не превышает 1.3 м/с, а большей частью падает до 0.5-0.7 м/с. Только пойма имеет ширину пять - семь, а местами и 15 км, а вся долина имеет ширину 20 и более километров.
[править] Нижнее течение
Ниже Якутска Лена принимает два главных своих притока - Алдан и Вилюй. Теперь это гигантский водный поток; даже там, где она идёт одним руслом, её ширина доходит до 10 км, а глубина превышает 16-20 м. Там же, где островов много, Лена разливается на 20-30 км. Берега реки суровы и безлюдны. Населённые пункты очень редки.
В нижнем течении Лены её бассейн очень узок: с востока наступают отроги Верхоянского хребта - водораздела рек Лены и Яны, с запада незначительные возвышенности Среднесибирского плоскогорья разделяют бассейны Лены и Оленёка. Ниже села Булун реку сжимают подходящие к ней совсем близко хребты Хараулах с востока и Ч