Достаточные признаки существования экстремума. Признаки локального возрастания и убывания функции. Необходимые и достаточные условия существования экстремума функции в точке Доказать достаточный признак экстремума функции одной переменной

Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных .

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y = f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна. Тогда

Другими словами:

Алгоритм.

  • Находим область определения функции.

Находим производную функции на области определения.

Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (эти точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).

Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).

Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак.

Пример. Найти экстремумы функции .
Решение.
Областью определения функции является все множество действительных чисел, кроме x = 2 .
Находим производную:

Нулями числителя являются точки x = -1 и x = 5 , знаменатель обращается в ноль при x = 2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x = -2, x = 0, x = 3 и x = 6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.
В точке x = -1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x = -1 – точка максимума, ей соответствуем максимум функции .
В точке x = 5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x = -1 – точка минимума, ей соответствуем минимум функции .
Графическая иллюстрация.

Ответ: .

Второй достаточный признак экстремума функции.
Пусть ,

если , то - точка минимума;

если , то - точка максимума.

Как видите, этот признак требует существования производной как минимум до второго порядка в точке .
Пример. Найти экстремумы функции .
Решение.
Начнем с области определения:

Продифференцируем исходную функцию:

Производная обращается в ноль при x = 1 , то есть, это точка возможного экстремума.
Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x = 1 - точка максимума. Тогда - максимум функции.
Графическая иллюстрация.

Ответ: .
Третий достаточный признак экстремума функции.
Пусть функция y = f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .
Тогда,

Конец работы -

Эта тема принадлежит разделу:

Алгебра и аналитическая геометрия. Понятие матрица, операции над матрицами и их свойства

Понятие матрица операции над матрицами и их свойства.. матрица это прямоугольная таблица составленная из чисел которые нельзя.. а сложение матриц поэлементная операция..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение дифференцируемости
Операция нахождения производной называется дифференцированием функции. Функция называется дифференцируемой в некоторой точке, если она имеет в этой точке конечную производную, и

Правило дифференцирования
Следствие 1. Постоянный множитель можно выносить за знак производной:

Геометрический смысл производной. Уравнение касательной
Углом наклона прямой y = kx+b называют угол, отсчитываемый от полож

Геометрический смысл производной функции в точке
Рассмотрим секущую АВ графика функции y = f(x) такую, что точки А и В имеют соответственно координаты

Решение
Функция определена для всех действительных чисел. Так как (-1; -3) – точка касания, то

Необходимые условия экстремума и достаточные условия экстремума
Определение возрастающей функции. Функция y = f(x) возрастает на интервале X, если для любых

Условия монотонности и постоянства функции
Условие (нестрогой) монотонности функции на интервале. Пусть функция имеет производную в каж

Определение первообразной
Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство

Проверка
Для проверки результата продифференцируем полученное выражение: В итоге получи

Первообразная произведения константы и функции равна произведению константы и первообразной функции
Достаточным условием существования первообразной у заданной на отрезке функции являе

Определение
Пусть определена на

Геометрический смысл
Определённый интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми

Свойства определенного интеграла
Основные свойства определенного интеграла. Свойство 1. Производная от определённого интеграла по верхнему пределу равна подынтегральной функции, в которую вместо переменной интегрирован

Формула Ньютона-Лейбница (с доказательством)
Формула Ньютона-Лейбница. Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедливо рав

Теорема (первое достаточное условие экстремума). Пусть в точке функция непрерывна, а производная при переходе через точку меняет знак. Тогда – точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Доказательство. Пусть при и при .

По теореме Лагранжа , где .Тогда если , то ; поэтому и , следовательно, , или . Если же , то ; поэтому и , следовательно, или .

Таким образом доказано, что в любых точках вблизи , т.е. – точка максимума функции .

Доказательство теоремы для точки минимума проводится аналогично. Теорема доказана .

Если при переходе через точку производная не меняет знак, то в точке экстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции равна 0 (), а ее вторая производная в этой точке отлична от нуля () и непрерывна в некоторой окрестности точки . Тогда – точка экстремума ; при это точка минимума, а при это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума.

1. Найти производную.

2. Найти критические точки функции.

3. Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

4. Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума.

1. Найти производную .

2. Найти вторую производную .

3. Найти те точки, в которых .

4. В этих точках определить знак .

5. Сделать вывод о существовании и характере экстремумов.

6. Найти экстремальные значения функции.

Пример. Рассмотрим . Найдем . Далее, при и при . Исследуем критические точки с помощью первого достаточного условия экстремума. Имеем, что при и при , и при . В точках и производная меняет свой знак: при с «+» на «–» и при с «–» на «+». Это значит, что в точке функция имеет максимум, а точке – минимум; . Для сравнения исследуем критические точки с помощью второго достаточного условия экстремума. Найдем вторую производную . Имеем: , а это значит, что в точке функция имеет максимум, а точке – минимум.

Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.

Определение . Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.



Различают вертикальные (рис. 6.6 а), горизонтальные (рис. 6.6 б) и наклонные (рис. 6.6 в) асимптоты.

На рис. 6.6а изображена вертикальная асимптота .

На рис 6.6б – горизонтальная асимптота .

На рис. 6.6в – наклонная асимптота .

Теорема 1. В точках вертикальных асимптот (например, ) функция терпит разрыв, ее предел слева и справа от точки равен :

Теорема 2. Пусть функция определена при достаточно больших и существуют конечные пределы

И .

Тогда прямая является наклонной асимптотой графика функции .

Теорема 3. Пусть функция определена при достаточно больших и существует предел функции . Тогда прямая есть горизонтальная асимптота графика функции .

Горизонтальная асимптота является частным случаем наклонной асимптоты, когда . Поэтому, если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример. Найти асимптоты графика функции .

Решение . В точке функция не определена, найдем пределы функции слева и справа от точки :

; .

Следовательно, - вертикальная асимптота.

Общая схема исследования функций и построения их графиков. Пример.

Общая схема исследования функции и построения ее графика.

1. Найти область определения .

2. Исследовать функцию на четность – нечетность.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

5. Найти экстремумы и интервалы монотонности функции.

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

7. Схематично построить график.

Подробная схема исследования функции и построения графика .

1. Найти область определения .

a. Если у есть знаменатель, он не должен обращаться в 0.



b. Подкоренное выражение корня четной степени должно быть неотрицательным (больше либо равно нулю).

c. Подлогарифмическое выражение должно быть положительным.

2. Исследовать функцию на четность – нечетность.

a. Если , то функция четная.

b. Если , то функция нечетная.

c. Если не выполнено ни , ни , то – функция общего вида.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

a. Вертикальная асимптота может возникнуть только на границе области определения функции.

b. Если ( или ), то – вертикальная асимптота графика .

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

a. Если , то – горизонтальная асимптота графика .

b. Если и , то прямая является наклонной асимптотой графика .

c. Если пределы, указанные в п. a, b, существуют только при одностороннем стремлении к бесконечности ( или ), то полученные асимптоты будут односторонними: левосторонними при и правосторонними при .

5. Найти экстремумы и интервалы монотонности функции.

a. Найти производную .

b. Найти критические точки (те точки, где или где не существует).

c. На числовой оси отметить область определения и ее критические точки.

d. На каждом из полученных числовых интервалов определить знак производной .

e. По знакам производной сделать вывод о наличии экстремумов у и их типе.

f. Найти экстремальные значения .

g. По знакам производной сделать вывод о возрастании и убывании .

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

a. Для того, чтобы найти точки пересечения графика с осью , надо решить уравнение . Точки , где – нули , будут точками пересечения графика с осью .

b. Точка пересечения графика с осью имеет вид . Она существует, только если точка входит в область определения функции .

8. Схематично построить график.

a. Построить систему координат и асимптоты.

b. Отметить экстремальные точки.

c. Отметить точки пересечения графика с осями координат.

d. Схематично построить график так, чтобы он проходил через отмеченные точки и приближался к асимптотам.

Пример. Исследовать функцию и схематично построить ее график.

2. – функция общего вида.

3. Поскольку и , то прямые и являются вертикальными асимптотами; точки и являются точками разрыва. , при не входит в область определения функции


Необходимый признак экстремума можно сформулировать и так: если точка M (x 0 , y 0 ) является точкой локального экстремума диффе­ренцируемой функции z = f (x , y ), то вектор градиента этой функции в этой точке будет нулевым вектором, т.е. .

Точки, в которых частные производные первого порядка функции двух переменных равны нулю, называются стационар­ными точками.

Для формулировки достаточного признака экстремума функции двух переменных нам понадобится матрица дифференциала второго порядка этой функции, записанного в виде квадратичной формы:

А также определитель этой матрицы, который можно записать в следующем виде:

Достаточный признак экстремума

Замечание. Если в стационарной точке М : Δ = АВ С 2 = 0, то наличие экстремума возможно, но для этого требуется проведение дополнительных исследований.

ПРИМЕР: Найти экстремумы функции

Вычислим частные производные первого и второго порядка данной функции:

Для нахождения стационарных точек приравняем к нулю частные производные первого порядка и получим систему уравнений:

или:

Решая эту систему, получим две стационарные точки М (0, 0) и N (1, 1/2).

Для выяснения наличия экстремумов и их характеров в этих точках вычислим значения частных производных второго порядка последовательно в каждой точке.

Для стационарной точки М (0, 0) получим:

Поскольку: Δ = АВ С 2 = - 36 < 0, в этой стационарной точке экстре­му­ма нет.

Для стационарной точки N (1, 1/2) получим:

Поскольку Δ = АВ С 2 = 108 > 0 и A = 6 > 0, заключаем, что в этой стационарной точке будет локальный минимум данной функции. Причем значение функции в точке минимума будет равно 0.

Метод наименьших квадратов

В практических приложениях, в том числе и экономических, часто возникает задача сглаживания некоторых экспериментально полученных зависи­мостей. То есть задача по возможности точно отразить общую тенденцию зависимости y от x , исключив случайные отклонения от этой общей тенденции, обусловленные неизбежными погрешностями экспериментальных или статисти­ческих данных. Такую сглаженную зависимость обычно ищут в виде формулы. При этом формулы, служащие для аналитического представления зависимостей опытных или экспериментальных данных, принято называть эмпирическими.

Задача поиска подходящей эмпирической формулы обычно разбивается на два основных этапа. На первом этапе устанавливают, или выбирают, общий вид такой зависимости y = f (x ), т.е. решают, является ли данная зависимость линейной, квадратич­ной, показательной, логарифмической и т.д. При таком выборе часто привлекаются дополнительные соображения, как правило, нематематического характера. На втором этапе находят неизвестные параметры выбранной эмпирической функции, используя только массив экспериментально получен­ных данных.

Согласно наиболее распространенному и теоретически обоснованному методу наименьших квадратов в качестве неизвестных параметров эмпиричес­кой функции f (x ) выбирают такие значения, чтобы сумма квадратов “невязок” δ i (отклонений “теоретических” значений функции от экспериментально полу­ченных значений) была бы минимальной, т.е.:

где и - экспериментальные данные, а n – общее количество пар этих данных.

Рассмотрим простейшую задачу такого рода. Пусть в качестве эмпири­чес­кой функции выбрана линейная функция, т.е. (рис. 22), и необ­ходимо найти такие значения параметров a и b , которые доставят минимум функции: .

Очевидно, функция будет функцией двух переменных a и b до тех пор, пока не найдены и не зафиксированы их “наилучшие” значе­ния, поскольку все и есть постоянные числа, найденные экспериментально. Поэтому для нахождения параметров прямой, наилучшим образом согласован­ной с опытными данными, достаточно решить систему уравнений:

После соответствующих вычислений производных и тождест­венных преобразований эта система может быть пред­став­­лена в виде системы нормальных уравнений :

Эта система линейных уравнений имеет единственное решение, которое может быть найдено по правилу Крамера:

;

Таким образом, наилучшим линейным приближением экспериментальной зависимости по методу наименьших квадратов будет являться прямая .

ПРИМЕР: Зависимость между прибылью предприятия Y и стои­мостью основных фондов Х , выраженных в условных единицах, задается таблицей.

Х
Y

Для выяснения вида эмпирической формулы связи построим график экспериментальной зависимости (кружки на рис. 23). По расположению экспериментальных точек на графике можно предположить, что зависимость между Х и Y является линейной, т.е. имеет вид:

Для определения числовых значений параметров а и b проведем расчет коэффициентов системы нормальных уравнений, а для удобства сведем вычисления в таблицу.

По данным таблицы:

Подставляя найденные значения (с учетом того, что n = 7) в формулы для расчета параметров а и b , найдем:

Таким образом, эмпирическая зависимость имеет вид (на рис. 23 изображена сплошной прямой): y = 0,557x – 5,143.

ВОПРОСЫ для самоконтроля знаний по теме 6:

1. Задает ли уравнение функцию нескольких переменных?


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .