Где используется ультразвук. Старт в науке. Звуковое поле излучателя

Глава из I тома руководства по ультразвуковой диагностике, написанного сотрудниками кафедры ультразвуковой диагностики Российской медицинской академии после­дипломного образования под ред.Митькова В.В.

ФИЗИЧЕСКИЕ СВОЙСТВА УЛЬТРАЗВУКА

Применение ультразвука в медицинской диагностике связано с возможностью получения изображения внутренних органов и структур. Основой метода является взаимодействие ультразвука с тканями тела человека. Собственно получение изображения можно разделить на две части. Первая - излучение коротких ультразвуковых импульсов, направленное в исследуемые ткани, и второе - формирование изображения на основе отраженных сигналов. Понимание принципа работы ультразвуковой диагностической установки, знание основ физики ультразвука и его взаимодействия с тканями тела человека помогут избежать механического, бездумного использования прибора, и, следовательно, более грамотно подходить к процессу диагностики.

Звук - это механическая продольная волна, в которой колебания частиц находятся в той же плоскости, что и направление распространения энергии (рис. 1).

Рис. 1. Визуальное и графическое представление изменений давления и плотности в ультразвуковой волне.

Волна переносит энергию, но не материю. В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения звука необходима среда - он не может распространяться в вакууме. Как и все волны, звук можно описать рядом параметров. Это частота, длина волны, скорость распространения в среде, период, амплитуда и интенсивность. Частота, период, амплитуда и интенсивность определяются источником звука, скорость распространения - средой, а длина волны - и источником звука, и средой. Частота - это число полных колебаний (циклов) за период времени в 1 секунду (рис. 2).

Рис. 2. Частота ультразвуковой волны 2 цикла в 1 с = 2 Гц

Единицами измерения частоты являются герц (Гц) и мегагерц (МГц). Один герц - это одно колебание в секунду. Один мегагерц = 1000000 герц. Что же делает звук «ультра»? Это частота. Верхняя граница слышимого звука - 20000 Гц (20 килогерц (кГц)) - является нижней границей ультра­звукового диапазона. Ультра­звуковые локаторы летучих мышей работают в диапазоне 25÷500 кГц. В современных ультра­звуковых приборах для получения изображения используется ультразвук частотой от 2 МГц и выше. Период - это время, необходимое для получения одного полного цикла колебаний (рис. 3).

Рис. 3. Период ультразвуковой волны.

Единицами измерения периода являются секунда (с) и микросекунда (мкс). Одна микросекунда является одной миллионной долей секунды. Период (мкс) = 1/частота (МГц). Длина волны - это длина, которую занимает в пространстве одно колебание (рис. 4).

Рис. 4. Длина волны.

Единицы измерения - метр (м) и миллиметр (мм). Скорость распространения ультразвука - это скорость, с которой волна перемещается в среде. Единицами скорости распространения ультразвука являются метр в секунду (м/с) и миллиметр в микросекунду (мм/мкс). Скорость распространения ультразвука определяется плотностью и упругостью среды. Скорость распространения ультразвука увеличивается при увеличении упругости и уменьшении плотности срелы. В таблице 2.1 представлены скорости распространения ультразвука в некоторых тканях тела человека.

Усредненная скорость распространения ультразвука в тканях тела человека составляет 1540 м/с - на эту скорость запрограммировано большинство ультразвуковых диагностических приборов. Скорость распространения ультразвука (С), частота (f) и длина волны (λ) связаны между собой следующим уравнением: С = f × λ. Так как в нашем случае скорость считается постоянной (1540 м/с), то оставшиеся две переменные f и λ связаны между собой обратно пропорциональной зависимостью. Чем выше частота, тем меньше длина волны и тем меньше размеры объектов, которые мы можем увидеть. Еще одним важным параметром среды является акустическое сопротивление (Z). Акустическое сопротивление - это произведение значения плотности среды и скорости распространения ультразвука. Сопротивление (Z) = плотность (р) × скорость распространения (С).

Для получения изображения в ультразвуковой диагностике используется не ультразвук, который излучается трансдьюсером непрерывно (постоянной волной), а ультразвук, излучаемый в виде коротких импульсов (импульсный). Он генерируется при приложении к пьезоэлементу коротких электрических импульсов. Для характеристики импульсного ультразвука используются дополнительные параметры. Частота повторения импульсов - это число импульсов, излучаемых в единииу времени (секунду). Частота повторения импульсов из меряете я в герцах (Гц) и килогерцах (кГц). Продолжительность импульса - это временная протяженность одного импульса (рис. 5).

Рис. 5. Продолжительность ультразвукового импульса.

Измеряется в секундах (с) и микросекундах (мкс). Фактор занятости - это часть времени, в которое происходит излучение (в форме импульсов) ультразвука. Пространственная протяженность импульса (ППИ) - это длина пространства, в котором размещается один ультразвуковой импульс (рис. 6).

Рис. 6. Пространственная протяженность импульса.

Для мягких тканей пространственная протяженность импульса (мм) равна произведению 1,54 (скорость распространения ультразвука в мм/мкс) и числа колебаний (циклов) в импульсе (n), отнесенному к частоте в МГц. Или ППИ = 1,54 × n/f. Уменьшения пространственной протяженности импульса можно достичь (а это очень важно для улучшения осевой разрешающей способности) за счет уменьшения числа колебаний в импульсе или увеличения частоты. Амплитуда ультразвуковой волны - это максимальное отклонение наблюдаемой физической переменной от среднего значения (рис. 7).

Рис. 7. Амплитуда ультразвуковой волны

Интенсивность ультразвука - это отношение мощности волны к площади, по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр (Вт/кв.см). При равной мощности излучения чем меньше площадь потока, тем выше интенсивность. Интенсивность также пропорциональна квадрату амплитуды. Так, если амплитуда удваивается, то интенсивность учетверяется. Интенсивность неоднородна как по площади потока, так и, в случае импульсного ультразвука, во времени.

При прохождении через любую среду будет наблюдаться уменьшение амплитуды и интенсивности ультразвукового сигнала, которое называется затуханием. Затухание ультразвукового сигнала вызывается поглощением, отражением и рассеиванием. Единицей затухания является децибел (дБ). Коэффициент затухания - это ослабление ультразвукового сигнала на единииу длины пути этого сигнала (дБ/см). Коэффициент затухания возрастает с увеличением частоты. Усредненные коэффициенты затухания в мягких тканях и уменьшение интенсивности эхосигнала в зависимости от частоты представлены в таблице 2.2.

ОТРАЖЕНИЕ И РАССЕИВАНИЕ

При прохождении ультразвука через ткани на границе сред с различным акустическим сопротивлением и скоростью проведения ультразвука возникают явления отражения, преломления, рассеивания и поглощения. В зависимости от угла говорят о перпендикулярном и наклонном (под углом) падения ультразвукового луча. При перпендикулярном падении ультразвукового луча он может быть полностью отражен или частично отражен, частично проведен через границу двух сред; при этом направление ультразвука, перешедшего из одной среды в другую среду, не изменяется (рис. 8).

Рис. 8. Перпендикулярное падение ультразвукового луча.

Интенсивность отраженного ультразвука и ультразвука, прошедшего границу сред, зависит от исходной интенсивности и разности акустических сопротивлений сред. Отношение интенсивности отраженной волны к интенсивности падающей волны называется коэффициентом отражения. Отношение интенсивности ультразвуковой волны, прошедшей через границу сред, к интенсивности падающей волны называется коэффициентом проведения ультразвука. Таким образом, если ткани имеют различные плотности, но одинаковое акустическое сопротивление - отражения ультразвука не будет. С другой стороны, при большой разнице акустических сопротивлений интенсивность отражения стремится к 100%. Примером этого служит граница воздух/мягкие ткани. На границе этих сред происходит практически полное отражение ультразвука. Чтобы улучшить проведение ультразвука в ткани тела человека, используют соединительные среды (гель). При наклонном падении ультразвукового луча определяют угол падения, угол отражения и угол преломления (рис. 9).

Рис. 9. Отражение, преломление.

Угол падения равен углу отражения. Преломление - это изменение направления распространения ультразвукового луча при пересечении им границы сред с различными скоростями проведения ультразвука. Синус угла преломления равен произведению синуса угла падения на величину, полученную от деления скорости распространения ультразвука во второй среде на скорость в первой. Синус угла преломления, а, следовательно, и сам угол преломления тем больше, чем больше разность скоростей распространения ультразвука в двух средах. Преломление не наблюдается, если скорости распространения ультразвука в двух средах равны или угол падения равен 0. Говоря об отражении, следует иметь в виду, что в том случае, когда длина волны много больше размеров неровностей отражающей поверхности, имеет место зеркальное отражение (описанное выше). В случае, если длина волны сопоставима с неровностями отражающей поверхности или имеется неоднородность самой среды, происходит рассеивание ультразвука.

Рис. 10. Обратное рассеивание.

При обратном рассеивании (рис. 10) ультразвук отражается в том направлении, откуда пришел исходный луч. Интенсивность рассеянных сигналов увеличивается с увеличением неоднородности среды и увеличением частоты (т.е. уменьшением длины волны) ультразвука. Рассеивание относительно мало зависит от направления падающего луча и, следовательно, позволяет лучше визуализировать отражающие поверхности, не говоря уже о паренхиме органов. Для того, чтобы отраженный сигнал был правильно расположен на экране, необходимо знать не только направление излученного сигнала, но и расстояние до отражателя. Это расстояние равно 1/2 произведения скорости ультразвука в среде на время между излучением и приемом отраженного сигнала (рис. 11). Произведение скорости на время делится пополам, так как ультразвук проходит двойной путь (от излучателя до отражателя и назад), а нас интересует только расстояние от излучателя до отражателя.

Рис. 11. Измерение расстояния с помощью ультразвука.

Датчики и ультразвуковая волна.

Для получения ультразвука используются специальные преобразователи - трансдьюсеры, которые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте. Суть эффекта состоит в том, что если к определенным материалам (пьезоэлектрикам) приложить электрическое напряжение, то произойдет изменение их формы (рис. 12).

Рис. 12. Обратный пьезоэлектрический эффект.

С этой целью в ультразвуковых приборах чаще всего применяются искусственные пьезоэлектрики, такие, как цирконат или титанат свинца. При отсутствии электрического тока пьезоэлемент возвращается к исходной форме, а при изменении полярности вновь произойдет изменение формы, но уже в обратном направлении. Если к пьезоэлементу приложить быстропеременный ток, то элемент начнет с высокой частотой сжиматься и расширяться (т.е. колебаться), генерируя ультразвуковое поле. Рабочая частота трансдьюсера (резонансная частота} определяется отношением скорости распространения ультразвука в пьезоэлементе к удвоенной толщине этого пьезоэлемента. Детектирование отраженных сигналов базируется на прямом пьезоэлектрическом эффекте (рис. 13).

Рис. 13. Прямой пьезоэлектрический эффект.

Возвращающиеся сигналы вызывают колебания пьезоэлемента и появление на его гранях переменного электрического тока. В этом случае пьезоэлемент функционирует как ультразвуковой датчик. Обычно в ультразвуковых приборах для излучения и приема ультразвука используются одни и те же элементы. Поэтому термины «преобразователь», «трансдьюсер», «датчик» являются синонимами. Ультразвуковые датчики представляют собой сложные устройства и, в зависимости от способа развертки изображения, делятся на датчики для приборов медленного сканирования (одноэлементные) и быстрого сканирования (сканирования в реальном времени) - механические и электронные. Механические датчики могут быть одно- и многоэлементные (анулярные). Развертка ультразвукового луча может достигаться за счет качания элемента, вращения элемента или качания акустического зеркала (рис. 14).

Рис. 14. Механические секторные датчики.

Изображение на экране в этом случае имеет форму сектора (секторные датчики) или окружности (круговые датчики). Электронные датчики являются многоэлементными и в зависимости от формы получаемого изображения могут быть секторными, линейными, конвексными (выпуклыми) (рис. 15).

Рис. 15. Электронные многоэлементные датчики.

Развертка изображения в секторном датчике достигается за счет качания ультразвукового луча с его одновременной фокусировкой (рис. 16).

Рис. 16. Электронный секторный датчик с фазированной антенной.

В линейных и конвексных датчиках развертка изображения достигается путем возбуждения группы элементов с пошаговым их перемещением вдоль антенной решетки с одновременной фокусировкой (рис. 17).

Рис. 17. Электронный линейный датчик.

Ультразвуковые датчики в деталях отличаются устройством друг от друга, однако их принципиальная схема представлена на рисунке 18.

Рис. 18. Устройство ультразвукового датчика.

Одноэлементный трансдьюсер в форме диска в режиме непрерывного излучения образует ультразвуковое поле, форма которого меняется в зависимости от расстояния (рис. 19).

Рис. 19. Два поля нефокусированного трансдьюсера.

Иногда могут наблюдаться дополнительные ультразвуковые «потоки», получившие названия боковых лепестков. Расстояние от диска на длину протяженности ближнего поля (зоны) называется ближней зоной. Зона за границей ближней называется дальней. Протяженность ближней зоны равна отношению квадрата диаметра трансдьюсера к 4 длинам волны. В дальней зоне диаметр ультразвукового поля увеличивается. Место наибольшего сужения ультразвукового луча называется зоной фокуса, а расстояние между трансдьюсером и зоной фокуса - фокусным расстоянием. Существуют различные способы фокусировки ультразвукового луча. Наиболее простым способом фокусировки является акустическая линза (рис. 20).

Рис. 20. Фокусировка с помощью акустической линзы.

С ее помощью можно сфокусировать ультразвуковой луч на определенной глубине, которая зависит от кривизны линзы. Данный способ фокусировки не позволяет оперативно изменять фокусное расстояние, что неудобно в практической работе. Другим способом фокусировки является использование акустического зеркала (рис. 21).

Рис. 21. Фокусировка с помощью акустического зеркала.

В этом случае, изменяя расстояние между зеркалом и трансдьюсером, мы будем менять фокусное расстояние. В современных приборах с многоэлементными электронными датчиками основой фокусировки является электронная фокусировка (рис. 17). Имея систему электронной фокусировки, мы можем с панели прибора изменять фокусное расстояние, однако, для каждого изображения мы будем иметь только одну зону фокуса. Так как для получения изображения используются очень короткие ультразвуковые импульсы, излучаемые 1000 раз в секунду (частота повторения импульсов 1 кГц), то 99,9% времени прибор работает как приемник отраженных сигналов. Имея такой запас времени, возможно запрограммировать прибор таким образом, чтобы при первом получении изображения была выбрана ближняя зона фокуса (рис. 22) и информация, полученная с этой зоны, была сохранена.

Рис. 22. Способ динамической фокусировки.

Далее - выбор следующей зоны фокуса, получение информации, сохранение. И так далее. В результате получается комбинированное изображение, сфокусированное по всей глубине. Следует, правда, отметить, что такой способ фокусировки требует значительных временных затрат на получение одного изображения (кадра), что вызывает уменьшение частоты кадров и мерцание изображения. Почему же столько усилий прикладывается для фокусировки ультразвукового луча? Дело в том, что чем уже луч, тем лучше боковая (латеральная, по азимуту) разрешающая способность. Боковая разрешающая способность - это минимальное расстояние между двумя объектами, расположенными перпендикулярно направлению распространения энергии, которые представляются на экране монитора в виде раздельных структур (рис. 23).

Рис. 23. Способ динамической фокусировки.

Боковая разрешающая способность равна диаметру ультразвукового луча. Осевая разрешающая способность - это минимальное расстояние между двумя объектами, расположенными вдоль направления распространения энергии, которые представляются на экране монитора в виде раздельных структур (рис. 24).

Рис. 24. Осевая разрешающая способность: чем короче ультразвуковой импульс, тем она лучше.

Осевая разрешающая способность зависит от пространственной протяженности ультразвукового импульса - чем короче импульс, тем лучше разрешение. Для укорочения импульса используется как механическое, так и электронное гашение ультразвуковых колебаний. Как правило, осевая разрешающая способность лучше боковой.

ПРИБОРЫ МЕДЛЕННОГО СКАНИРОВАНИЯ

В настоящее время приборы медленного (ручного, сложного) сканирования представляют лишь исторический интерес. Морально они умерли с появлением приборов быстрого сканирования (приборов, работающих в реальном времени). Однако их основные компоненты сохраняются и в современных приборах (естественно, с использованием современной элементной базы). Сердцем является главный генератор импульсов (в современных аппаратах - мощный процессор), который управляет всеми системами ультразвукового прибора (рис. 25).

Рис. 25. Блок-схема ручного сканера.

Генератор импульсов посылает электрические импульсы на трансдьюсер, который генерирует ультразвуковой импульс и направляет его в ткани, принимает отраженные сигналы, преобразовывая их в электрические колебания. Эти электрические колебания далее направляются на радиочастотный усилитель, к которому обычно подключается временно-амплитудный регулятор усиления (ВАРУ) - регулятор компенсации тканевого поглощения по глубине. Ввиду того, что затухание ультразвукового сигнала в тканях происходит по экспоненциальному закону, яркость объектов на экране с увеличением глубины прогрессивно падает (рис. 26).

Рис. 26. Компенсация тканевого поглощения.

Использование линейного усилителя, т.е. усилителя, пропорционально усиливающего все сигналы, привело бы к переусилению сигналов в непосредственной близости от датчика при попытке улучшения визуализации глубоко расположенных объектов. Использование логарифмических усилителей позволяет решить эту проблему. Ультразвуковой сигнал усиливается пропорционально времени задержки его возвращения - чем позже вернулся, тем сильнее усиление. Таким образом, применение ВАРУ позволяет получить на экране изображение одинаковой яркости по глубине. Усиленный таким образом радиочастотный электрический сигнал подается затем на демодулятор, где он выпрямляется и фильтруется и еще раз усиленный на видеоусилителе подается на экран монитора.

Для сохранения изображения на экране монитора необходима видеопамять. Она может быть разделена на аналоговую и цифровую. Первые мониторы позволяли представлять информацию в аналоговой бистабильной форме. Устройство, называемое дискриминатором, позволяло изменять порог дискриминации - сигналы, интенсивность которых была ниже порога дискриминации, не проходили через него и соответствующие участки экрана оставались темными. Сигналы, интенсивность которых превышала порог дискриминации, представлялись на экране в виде белых точек. При этом яркость точек не зависела от абсолютного значения интенсивности отраженного сигнала - все белые точки имели одинаковую яркость. При таком способе представления изображения - он получил название «бистабильный» - хорошо были видны границы органов и структуры с высокой отражающей способностью (например, почечный синус), однако, оценить структуру паренхиматозных органов не представлялось возможным. Появление в 70-х годах приборов, которые позволяли передавать на экране монитора оттенки серого цвета, знаменовало начало эры серошкальных приборов. Эти приборы давали возможность получать информацию, которая была недостижима при использовании приборов с бистабильным изображением. Развитие компьютерной техники и микроэлектроники позволило вскоре перейти от аналоговых изображений к цифровым. Цифровые изображения в ультразвуковых установках формируются на больших матрицах (обычно 512 × 512 пикселов) с числом градаций серого 16-32-64-128-256 (4-5-6-7-8 бит). При визуализации на глубину 20 см на матрице 512 × 512 пикселов один пиксел будет соответствовать линейным размерам в 0,4 мм. На современных приборах имеется тенденция к увеличению размеров дисплеев без потери качества изображения и на приборах среднего класса 12-дюймовый (30 см по диагонали) экран становится обычным явлением.

Электронно-лучевая трубка ультразвукового прибора (дисплей, монитор) использует остро сфокусированный пучок электронов для получения яркого пятна на экране, покрытом специальным фосфором. С помощью отклоняющих пластин это пятно можно перемещать по экрану.

При А-типе развертки (Amplitude) по одной оси откладывается расстояние от датчика, по другой - интенсивность отраженного сигнала (рис. 27).

Рис. 27. А-тип развертки сигнала.

В современных приборах А-тип развертки практически не используется.

В-тип развертки (Brightness - яркость) позволяет вдоль линии сканирования получить информацию об интенсивности отраженных сигналов в виде различия яркости отдельных точек, составляющих эту линию.

Пример экрана: слева развёртка B , справа - M и кардиограмма.

М-тип (иногда ТМ) развертки (Motion - движение) позволяет регистрировать движение (перемещение) отражающих структур во времени. При этом по вертикали регистрируются перемещения отражающих структур в виде точек различной яркости, а по горизонтали - смещение положения этих точек во времени (рис. 28).

Рис. 28. М-тип развертки.

Для получения двумерного томографического изображения необходимо тем или иным образом произвести перемещение линии сканирования вдоль плоскости сканирования. В приборах медленного сканирования это достигалось перемещением датчика вдоль поверхности тела пациента вручную.

ПРИБОРЫ БЫСТРОГО СКАНИРОВАНИЯ

Приборы быстрого сканирования, или, как их чаще называют, приборы, работающие в реальном времени, в настоящее время полностью заменили приборы медленного, или ручного, сканирования. Это связано с целым рядом преимуществ, которыми обладают эти приборы: возможность оценивать движение органов и структур в реальном времени (т.е. практически в тот же момент времени); резкое уменьшение затрат времени на исследование; возможность проводить исследования через небольшие акустические окна.

Если приборы медленного сканирования можно сравнить с фотоаппаратом (получение неподвижных изображений), то приборы, работающие в реальном времени - с кино, где неподвижные изображения (кадры) с большой частотой сменяют друг друга, создавая впечатление движения.

В приборах быстрого сканирования используются, как уже говорилось выше, механические и электронные секторные датчики, электронные линейные датчики, электронные конвексные (выпуклые) датчики, механические радиальные датчики.

Некоторое время назад на ряде приборов появились трапециевидные датчики, поле зрения которых имело трапециевидную форму, однако, они не показали преимуществ относительно конвексных датчиков, но сами имели целый ряд недостатков.

В настоящее время наилучшим датчиком для исследования органов брюшной полости, забрюшинного пространства и малого таза является конвексный. Он обладает относительно небольшой контактной поверхностью и очень большим полем зрения в средней и дальней зонах, что упрощает и ускоряет проведение исследования.

При сканировании ультразвуковым лучом результат каждого полного прохода луча называется кадром. Кадр формируется из большого количества вертикальных линий (рис. 29).

Рис. 29. Формирование изображения отдельными линиями.

Каждая линия - это как минимум один ультразвуковой импульс. Частота повторения импульсов для получения серошкального изображения в современных приборах составляет 1 кГц (1000 импульсов в секунду).

Существует взаимосвязь между частотой повторения импульсов (ЧПИ), числом линий, формирующих кадр, и количеством кадров в единицу времени: ЧПИ = число линий × частота кадров .

На экране монитора качество получаемого изображения будет определяться, в частности, плотностью линий. Для линейного датчика плотность линий (линий/см) является отношением числа линий, формирующих кадр, к ширине части монитора, на котором формируется изображение.

Для датчика секторного типа плотность линий (линий/градус) - отношение числа линий, формирующих кадр, к углу сектора.

Чем выше частота кадров, установленная в приборе, тем (при заданной частоте повторения импульсов) меньше число линий, формирующих кадр, меньше плотность линий на экране монитора, ниже качество получаемого изображения. Зато при высокой частоте кадров мы имеем хорошее временное разрешение, что очень важно при эхо­кардио­графичес­ких исследованиях.

ПРИБОРЫ ДЛЯ ДОППЛЕРОГРАФИИ

Ультразвуковой метод исследования позволяет получать не только информацию о структурном состоянии органов и тканей, но и характеризовать потоки в сосудах. В основе этой способности лежит эффект Допплера - изменение частоты принимаемого звука при движении относительно среды источника или приемника звука или тела, рассеивающего звук. Он наблюдается из-за того, что скорость распространения ультразвука в любой однородной среде является постоянной. Следовательно, если источник звука движется с постоянной скоростью, звуковые волны, излучаемые в направлении движения как бы сжимаются, увеличивая частоту звука. Волны, излучаемые в обратном направлении, как бы растягиваются, вызывая снижение частоты звука (рис. 30).

Рис. 30. Эффект Допплера.

Путем сопоставления исходной частоты ультразвука с измененной возможно определить долллеровский сдвиг и рассчитать скорость. Не имеет значения, излучается ли звук движущимся объектом или этот объект отражает звуковые волны. Во втором случае источник ультразука может быть неподвижным (ультразвуковой датчик), а в качестве отражателя ультразвуковых волн могут выступать движущиеся эритроциты. Допплеровский сдвиг может быть как положительным (если отражатель движется к источнику звука), так и отрицательным (если отражатель движется от источника звука). В том случае, если направление падения ультразвукового луча не параллельно направлению движения отражателя, необходимо скорректировать допплеровский сдвиг на косинус угла q между падающим лучом и направлением движения отражателя (рис. 31).

Рис. 31. Угол между падающим лучом и направлением тока крови.

Для получения допплеровской информации применяются два типа устройств - постоянно­волновые и импульсные. В постоянно­волновом допплеровском приборе датчик состоит из двух трансдьюсеров: один из них постоянно излучает ультразвук, другой постоянно принимает отраженные сигналы. Приемник определяет допплеровский сдвиг, который обычно составляет-1/1000 частоты источника ультразвука (слышимый диапазон) и передает сигнал на громкоговорители и, параллельно, на монитор для качественной и количественной оценки кривой. Постоянно­волновые приборы детектируют кровоток почти по всему ходу ультразвукового луча или, другими словами, имеют большой контрольный объем. Это может вызвать получение неадекватной информации при попадании в контрольный объем нескольких сосудов. Однако большой контрольный объем бывает полезен при расчете падения давления при стенозе клапанов сердца.

Для того, чтобы оценить кровоток в какой-либо конкретной области, небходимо разместить контрольный объем в исследуемой области (например, внутри определенного сосуда) под визуальным контролем на экране монитора. Это может быть достигнуто при использовании импульсного прибора. Существует верхний предел допплеровского сдвига, который может быть детектирован импульсными приборами (иногда его называют пределом Найквиста). Он составляет примерно 1/2 частоты повторения импульсов. При его превышении происходит искажение допплеровского спектра (aliasing). Чем выше частота повторения импульсов, тем больший допплеровский сдвиг может быть определен без искажений, однако тем ниже чувствительность прибора к низко­скоростным потокам.

Ввиду того, что ультразвуковые импульсы, направляемые в ткани, содержат большое количество частот помимо основной, а также из-за того, что скорости отдельных участков потока неодинаковы, отраженный импульс состоит из большого количества различных частот (рис. 32).

Рис. 32. График спектра ультразвукового импульса.

С помощью быстрого преобразования Фурье частотный состав импульса может быть представлен в виде спектра, который может быть изображен на экране монитора в виде кривой, где по горизонтали откладываются частоты допплеровского сдвига, а по вертикали - амплитуда каждой составляющей. По допплеровскому спектру возможно определять большое количество скоростных параметров кровотока (максимальная скорость, скорость в конце диастолы, средняя скорость и т.д.), однако эти показатели являются угол­зависимыми и их точность крайне зависит от точности коррекции угла. И если в крупных неизвитых сосудах коррекция угла не вызывает проблем, то в мелких извитых сосудах (сосуды опухоли) определить направление потока достаточно сложно. Для решения этой проблемы был предложен ряд почти угол­независимых индексов, наиболее рас­простра­нен­ными из которых являются индекс резистентности и пульсаторный индекс. Индекс резистентности является отношением разности максимальной и минимальной скоростей к максимальной скорости потока (рис. 33). Пульсаторный индекс является отношением разности максимальной и минимальной скоростей к средней скорости потока.

Рис. 33. Расчет индекса резистентности и пульсаторного индекса.

Получение допплеровского спектра с одного контрольного объема позволяет оценивать кровоток в очень небольшом участке. Цветовая визуализация потоков (цветовое допплеровское картирование) позволяет получать двумерную информацию о кровотоках в реальном времени в дополнение к обычной серошкальной двумерной визуализации. Цветовая допплеровская визуализация расширяет возможности импульсного принципа получения изображения. Сигналы, отраженные от неподвижных структур, распознаются и представляются в серошкальном виде. Если отраженный сигнал имеет частоту, отличную от излученного, то это означает, что он отразился от движущегося объекта. В этом случае производится определение допплеровского сдвига, его знак и величина средней скорости. Эти параметры используются для определения цвета, его насыщенности и яркости. Обычно направление потока к датчику кодируется красным, а от датчика - синим цветом. Яркость цвета определяется скоростью потока.

В последние годы появился вариант цветового допплеровского картирования, получивший название «энергетического допплера» (Power Doppler). При энергетическом допплере определяется не значение допплеровского сдвига в отраженном сигнале, а его энергия. Такой подход позволяет повысить чувствительность метода к низким скоростям, сделать его почти угол­независимым, правда, ценой потери возможности определения абсолютного значения скорости и направления потока.

АРТЕФАКТЫ

Артефакт в ультразвуковой диагностике - это появление на изображении несуществующих структур, отсутствие существующих структур, неправильное расположение структур, неправильная яркость структур, неправильные очертания структур, неправильные размеры структур. Реверберация, один из наиболее часто встречающихся артефактов, наблюдается в том случае, если ультразвуковой импульс попадает между двумя или более отражающими поверхностями. При этом часть энергии ультразвукового импульса многократно отражается от этих поверхностей, каждый раз частично возвращаясь к датчику через равные промежутки времени (рис. 34).

Рис. 34. Реверберация.

Результатом этого будет появление на экране монитора несуществующих отражающих поверхностей, которые будут располагаться за вторым отражателем на расстоянии равном расстоянию между первым и вторым отражателями. Уменьшить реверберации иногда удается изменением положения датчика. Вариантом реверберации является артефакт, получивший название «хвост кометы». Он наблюдается в том случае, когда ультразвук вызывает собственные колебания объекта. Этот артефакт часто наблюдается позади мелких пузырьков газа или мелких металлических предметов. Ввиду того, что далеко не всегда весь отраженный сигнал возвращается к датчику (рис. 35), возникает артефакт эффективной отражательной поверхности, которая меньше реальной отражательной поверхности.

Рис. 35. Эффективная отражательная поверхность.

Из-за этого артефакта определяемые с помощью ультразвука размеры конкрементов обычно немного меньше, чем истинные. Преломление может вызывать неправильное положение объекта на полученном изображении (рис. 36).

Рис. 36. Эффективная отражательная поверхность.

В том случае, если путь ультразвука от датчика к отражающей структуре и назад не является одним и тем же, возникает неправильное положение объекта на полученном изображении. Зеркальные артефакты - это появление объекта, находящегоя по одну сторону сильного отражателя с его другой стороны (рис. 37).

Рис. 37. Зеркальный артефакт.

Зеркальные артефакты часто возникают около диафрагмы.

Артефакт акустической тени (рис. 38) возникает за сильно отражающими или сильно поглощающими ультразвук структурами. Механизм образования акустической тени аналогичен формированию оптической.

Рис. 38. Акустическая тень.

Артефакт дистального лсевдоусиления сигнала (рис. 39) возникает позади слабо поглощающих ультразвук структур (жидкостные, жидкостьсодержащие образования).

Рис. 39. Дистальное псевдоусиление эха.

Артефакт боковых теней связан с преломлением и, иногда, интерференцией ультразвуковых волн при падении ультразвукового луча по касательной на выпуклую поверхность (киста, шеечный отдел желчного пузыря) структуры, скорость прохождения ультразвука в которой существенно отличается от окружающих тканей (рис. 40).

Рис. 40. Боковые тени.

Артефакты, связанные с неправильным определением скорости ультразвука, возникают из-за того, что реальная скорость распространения ультразвука в той или иной ткани больше или меньше усредненной (1,54 м/с) скорости, на которую запрограммирован прибор (рис. 41).

Рис. 41. Искажения из-за различия в скорости проведения ультразвука (V1 и V2) различными средами.

Артефакты толщины ультразвукового луча - это появление, главным образом в жидкостьсодержащих органах, пристеночных отражений, обусловленных тем, что ультразвуковой луч имеет конкретную толщину и часть этого луча может одновременно формировать изображение органа и изображение рядом расположенных структур (рис. 42).

Рис. 42. Артефакт толщины ультразвукового луча.

КОНТРОЛЬ КАЧЕСТВА РАБОТЫ УЛЬТРАЗВУКОВОЙ АППАРАТУРЫ

Контроль качества ультразвукового оборудования включает в себя определение относительной чувствительности системы, осевой и боковой разрешающей способностей, мертвой зоны, правильности работы измерителя расстояния, точности регистрации, правильности работы ВАРУ, определение динамического диапазона серой шкалы и т.д. Для контроля качества работы ультразвуковых приборов используются специальные тест-объекты или тканево-эквивалентные фантомы (рис. 43). Они являются коммерчески доступными, однако в нашей стране мало распространены, что делает практически невозможным провести поверку ультразвукового диагностического оборудования на местах.

Рис. 43. Тест-объект Американского института ультразвука в медицине.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ УЛЬТРАЗВУКА И БЕЗОПАСНОСТЬ

Биологическое действие ультразвука и его безопасность для больного постоянно дискутируется в литературе. Знания о биологическом воздействии ультразвука базируются на изучении механизмов воздействия ультразвука, изучении эффекта воздействия ультразвука на клеточные культуры, экспериментальных исследованиях на растениях, животных и, наконец, на эпидемиологических исследованиях.

Ультразвук может вызывать биологическое действие путем механических и тепловых воздействий. Затухание ультразвукового сигнала происходит из-за поглощения, т.е. превращения энергии ультразвуковой волны в тепло. Нагрев тканей увеличивается с увеличением интенсивности излучаемого ультразвука и его частоты. Кавитация - это образование в жидкости пульсирующих пузырьков, заполненных газом, паром или их смесью. Одной из причин возникновения кавитации может являться ультразвуковая волна. Так вреден ультразвук или нет?

Исследования, связанные с воздействием ультразвука на клетки, экспериментальные работы на растениях и животных, а также эпидемиологические исследования позволили сделать Американскому институту ультразвука в медицине следующее заявление, которое в последний раз было подтверждено в 1993 году:

«Никогда не сообщалось о подтвержденных биологических эффектах у пациентов или лиц, работающих на приборе, вызванных облучением (ультразвуком), интенсивность которого типична для современных ультразвуковых диагностических установок. Хотя существует возможность, что такие биологические эффекты могут быть выявлены в будущем, современные данные указывают, что польза для больного при благоразумном использовании диагностического ультразвука перевешивает потенциальный риск, если таковой вообще существует».

НОВЫЕ НАПРАВЛЕНИЯ В УЛЬТРАЗВУКОВОЙ ДИАГНОСТИКЕ

Происходит бурное развитие ультразвуковой диагностики, постоянное совершенствование ультразвуковых диагностических приборов. Можно предположить несколько основных направлений будущего развития этого диагностического метода.

Возможно дальнейшее совершенствование допплеровских методик, особенно таких, как энергетический допплер, допплеровская цветовая визуализация тканей.

Трехмерная эхография в будущем может стать весьма важным направлением ультразвуковой диагностики. В настоящий момент существуют несколько коммерчески доступных ультразвуковых диагностических установок, позволяющих проводить трехмерную реконструкцию изображений, однако, пока клиническое значение этого направление остается неясным.

Концепция применения ультразвуковых контрастов была впервые выдвинута R.Gramiak и P.M.Shah в конце шестидесятых при эхокардиографическом исследовании. В настоящее время существует коммерчески доступный контраст «Эховист» (Шеринг), применяемый для визуализации правых отделов сердца. Недавно он был модифицирован с уменьшением размеров частиц контраста и может рециркулировать в кровеносной системе человека («Левовист», Шеринг). Этот препарат существенно улучшает допплеровский сигнал, как спектральный, так и цветовой, что может оказаться существенным для оценки опухолевого кровотока.

Внутриполостная эхография с использованием ультратонких датчиков открывает новые возможности для исследования полых органов и структур. Однако в настоящее время широкое применение этой методики ограничивается высокой стоимостью специализированных датчиков, которые к тому же могут применяться для исследования ограниченное число раз (1÷40).

Компьютерная обработка изображений с целью объективизации получаемой информации является перспективным направлением, которое может в будущем улучшить точность диагностики незначительных структурных изменений в паренхиматозных органах. К сожалению, полученные к настоящему времени результаты существенного клинического значения не имеют.

Тем не менее то, что еще вчера казалось в ультразвуковой диагностике далеким будущим, стало сегодня обычной рутинной практикой и, вероятно, в ближайшее время мы станем свидетелями внедрения новых ультразвуковых диагностических методик в клиническую практику.

Если в сплошной среде – газах, жидкостях или твердых телах частицы среды окажутся выведенными из положения равновесия, то упругие силы, действующие на них со стороны других частиц, будут возвращать их в положение равновесия. При этом частицы будет совершать колебательное движение. Распространение упругих колебаний в сплошной среде представляет собой волнообразный процесс.
Колебания с частотой от единиц Герц (Гц) до 20 Герц называются инфразвуковыми , при частоте от 20 Гц до 16…20 кГц колебания создают слышимые звуки . Ультразвуковые колебания соответствуют частотам от 16…20 кГц до 10 8 Гц, а колебания с частотой более 10 8 Гц получили название гиперзвуков . На рисунке 1.1 показана логарифмическая шкала частот, выполненная на основе выражения lg 2 f = 1, 2, 3 …, n, где 1, 2, 3 …, n – номера октав.

Рисунок 1.1 - Диапазоны упругих колебаний в материальных средах

Физическая природа упругих колебаний одинакова во всем диапазоне частот. Для понимания природы упругих колебаний рассмотрим их свойства.
Форма волны - это форма волнового фронта, т.е. совокупности точек, обладающих одинаковой фазой. Колебания плоскости создают плоскую звуковую волну, если излучателем служит цилиндр, периодически сжимающийся и расширяющийся по направлению своего радиуса, то возникает цилиндрическая волна. Точечный излучатель, или пульсирующий шарик, размеры которого малы по сравнению с длиной излучаемой волны, воздает сферическую волну.

Звуковые волны подразделяются по типу волн : они могут быть продольными, поперечными, изгибными, крутильными – в зависимости от условий возбуждения и распространения. В жидкостях и газах распространяются только продольные волны, в твердых телах могут возникать также поперечные и другие из перечисленных типов волн. В продольной волне направление колебаний частиц совпадает с направлением распространения волны (Рисунок 1.2, а ), поперечная волна распространяется перпендикулярно направлению колебаний частиц (Рисунок 1.2, б ) .

а) движение частиц среды при распространении продольной волны; б) движение частиц среды при распространении поперечной волны.

Рисунок 1.2 – Движение частиц при распространении волны

Любая волна, как колебание, распространяющееся во времени и в пространстве, может быть охарактеризована частотой , длиной волны и амплитудой (Рисунок 3) . При этом длина волны λ связана с частотой f через скорость распространения волны в данном материале c: λ = c/f .

Рисунок 1.3 - Характеристики колебательного процесса

1.6 Практическое применение низкоэнергетических ультразвуковых колебаний

Область применение УЗ колебаний низкой интенсивности (условно до 1 Вт/см 2) очень обширна и мы поочередно рассмотрим несколько основных применений УЗ колебаний малой интенсивности.
1. УЗ приборы для контроля химических характеристик различных материалов и сред. Все они основаны на изменении скорости УЗ колебаний в среде и позволяют:
- определять концентрацию бинарных смесей;
- плотности растворов;
- степень полимеризации полимеров;
- наличие в растворах примесей, газовых пузырьков;
- определять скорости протекания химических реакций;
- жирность молока, сливок, сметаны;
- дисперсность в гетерогенных системах и др.
Разрешающая способность современных УЗ приборов 0,05 % , точность измерений скорости распространения на образцах длиной 1 м составляет 0,5 -1 м/с (скорость в металле более 5000 м/с). Практически все измерения проводятся методом сравнения с эталоном.
2. Приборы для контроля физико - химических характеристик , основанные на измерении затухания ультразвука. Такие приборы позволяют осуществлять измерение вязкости, измерение плотности, состав, содержание примесей, газов и т.п. Используемые методики также основаны на методах сравнения с эталоном.
3. УЗ расходомеры жидкостей в трубопроводах . Их действие также основано на измерении скорости распространения УЗ колебаний вдоль потока жидкости и против потока. Сравнение двух скоростей позволяет определить скорость потока, а при известном сечении трубопровода расход. Пример одного из расходомеров (№15183 в Госреестре Средств Измерений) представлен на рисунке 1.4.

Рисунок 1.4 – Стационарный ультразвуковой расходомер "АКРОН"

Такой расходомер обеспечивает измерение объемного расхода и суммарного объема (количества) жидкостей, протекающих в напорных трубопроводах систем водоснабжения, канализации и нефтепродуктоснабжения без врезки в действующий трубопровод. Принцип действия расходомера заключается в измерении разности времени прохождения ультразвуковой волны по потоку и против потока контролируемой жидкости, пересчете ее в мгновенное значение расхода с последующим интегрированием.
Погрешность прибора составляет 2 % от верхнего предела измерения. Верхний и нижний пределы измерения устанавливает оператор. Расходомер включает в себя блок датчиков (состоит из двух ультразвуковых датчиков и устройства для их крепления на трубе) и электронный блок, соединенные радиочастотным кабелем длиной до 50 м (стандартно - 10м.). Датчики устанавливаются на прямолинейном участке трубопровода на наружной поверхности, очищенной от грязи, краски и ржавчины. Условие правильной установки датчиков - наличие прямого участка трубы не менее 10 диаметров трубы - перед, и 5 диаметров - после датчиков.
4. Сигнализаторы уровней
Принцип действия основан на локации уровня жидких или сыпучих материалов ультразвуковыми импульсами, проходящими через газовую среду, и на явлении отражения этих импульсов от границы раздела «газ - контролируемая среда». Мерой уровня при этом является время распространения звуковых колебаний от излучателя до контролируемой границы раздела сред и обратно до приемника. Результат измерения выводится на персональный компьютер, где все измерения запоминаются, с последующей возможностью их просмотра и анализа, а также подключения к системе автоматизированного сбора и обработки данных. Уровнемер в составе системы может включать конечные автоматы, насосы и др. устройства при уровне выше максимального и ниже минимального значения, что позволяет автоматизировать технологический процесс. Дополнительно формируется токовый выход (0,5 мА, 0-20 мА) для самопишущих приборов.
Сигнализатор уровня позволяет контролировать температуру среды в резервуарах. Основным форматом выводимых данных является расстояние от вершины резервуара до поверхности, содержащегося в нем вещества. По желанию заказчика, при предоставлении необходимой информации возможна доработка устройства для вывода высоты, массы либо объема вещества в резервуаре.
5. УЗ анализаторы состава газов основаны на использовании зависимости скорости УЗ в смеси газов от скоростей в каждом из составляющих эту смесь газов.
6. Охранные УЗ устройства основаны на измерении различных параметров УЗ полей (амплитуды колебаний при перекрытии пространства между излучателем и приемником, изменении частоты при отражении от движущегося объекта и т.п.).
7. Измерители температуры газов и пожарные сигнализаторы, основанные на изменении скорости распространения при изменении температуры среды или появления дыма.
8. Приборы ультразвукового неразрушающего контроля. Неразрушающий контроль является одним из основных технологических приёмов обеспечения качества материалов и изделий. Не одно изделие не должно эксплуатироваться без проверки. Можно проверку осуществить путем испытаний, но так можно испытать 1- 10 изделий, но нельзя проверить 100% всех изделий, т.к. проверить - это значит испортить всё изделия. Поэтому, проверять необходимо, не разрушая.
Одни из наиболее дешевых, простых и чувствительных является УЗ метод неразрушающего контроля. Главными достоинствами по сравнению с другими методами неразрушающих испытаний являются:

- обнаружение дефектов, находящихся глубоко внутри материала, что стало возможным благодаря улучшенной проникающей способности. Ультразвуковое обследование проводится до глубины нескольких метров. Контролю подвергаются различные изделия, например: длинные стальные стержни, роторные штамповки и т.д.;
- высокая чувствительность при обнаружении чрезвычайно малых дефектов длиной несколько миллиметров;
- точное определение местоположения внутренних дефектов, оценка их размера, характеристика направления, формы и природы;
- достаточность доступа только к одной из сторон изделия;
- контроль процесса электронными средствами, что обеспечивает почти мгновенное выявление дефектов;
- объемное сканирование, что позволяет обследовать объем материала;
- отсутствие требований по мерам предосторожности, связанным со здоровьем;
- портативность оборудования.

1.7 Практическое применение высокоинтенсивных ультразвуковых колебаний

На сегодняшний день основные процессы, реализуемые и интенсифицируемые при помощи высокоэнергетических ультразвуковых колебаний, принято разделять на три основные подгруппы, в зависимости от вида среды, в которой они реализуются (рисунок 1.5) .

Рисунок 1.5 – Применение высокоэнергетических ультразвуковых колебаний

В зависимости от вида среды процессы условно делятся на процессы в жидких, твердых и термопластичных материалах и газообразных (воздушных) средах. В последующих разделах будут более подробно рассмотрены процессы и аппараты для интенсификации процессов в жидких, твердых и термопластичных материалах, газообразных средах .
Далее рассмотрим примеры основных технологий, реализуемых с использованием высокоэнергетических ультразвуковых колебаний.
1. Размерная обработка.

Ультразвуковые колебания применяются для обработки хрупких и особотвердых материалов и металлов.
Основные технологические процессы, интенсифицируемые ультразвуковыми колебаниями это сверление, зенкование, нарезание резьб, волочение проволоки, полировка, шлифовка, сверление отверстий сложной формы. Интенсификация этих технологических процессов происходит благодаря наложению на инструмент ультразвуковых колебаний.
2. УЗ очистка.
Сегодня существует множество способов очистки поверхностей от различных загрязнений. УЗ очистка более быстрая, обеспечивает высокое качество и отмывает труднодоступные участки. При этом обеспечивается замена высокотоксичных, огнеопасных и дорогих растворителей обычной водой.
С помощью высокочастотных ультразвуковых колебаний производится очистка автомобильных карбюраторов и инжекторов за несколько минут.
Причина ускорения очистки в кавитации, особым явлением при котором в жидкости образуются мельчайшие газовые пузырьки. Эти пузырьки лопаются (взрываются) и создают мощные гидропотоки, которые вымывают всю грязь. На этом принципе существуют сегодня стиральные машины и малые установки мойки. Особенности реализации кавитационного процесса и его потенциальные возможности будут рассмотрены отдельно. УЗ очищает металлы от полировочных паст, прокат от окалины, драгоценные камни от полировочных мест. Очистка печатных форм, стирка тканей, мойка ампул. Очистка трубопроводов сложной формы. Кроме очистки, ультразвук способен производить удаление мелких заусенец, полировку.
Ультразвуковое воздействие в жидких средах уничтожает микроорганизмы и поэтому широко используется в медицине и микробиологии.
Возможна и другая реализация УЗ очистки.
- очистка дыма от твердых частиц в воздухе. Для этого также используется ультразвуковое воздействие на туманы и дым. Частицы в УЗ поле начинают активно двигаться, соударяются и слипаются, осаждаются на стенки. Это явление называется ультразвуковой коагуляцией и используется для борьбы с туманом на аэродромах, на дорогах и в морских портах.
3. УЗ сварка.
В настоящее время, с помощью ультразвуковых колебаний высокой интенсивности, производится сварка полимерных термопластичных материалов. Сварка полиэтиленовых тюбиков, коробок, банок обеспечивает отличную герметичность. В отличие от других способов, с помощью ультразвука можно варить загрязненные пластмассы, трубки с жидкостью и т.д. При этом содержимое стерилизуется.
С помощью ультразвуковой сварки производится сварка тончайшей фольги или проволоки к металлической детали. Причем УЗ сварка - является холодной сваркой, поскольку шов формируется при температуре ниже температуры плавления. Таким образом, соединяются сваркой алюминий, тантал, цирконий, ниобий, молибден и т.п.
В настоящее время ультразвуковая сварка нашла наибольшее применение для высокоскоростных процессов упаковки и производства полимерных упаковочных материалов.
4. Пайка и лужение
С помощью высокочастотных ультразвуковых колебаний производится пайка алюминия. С помощью УЗ можно лудить, а затем паять керамику, стекло, что ранее было невозможно. Ферриты, припайка полупроводниковых кристаллов к позолоченным корпусам реализуются сегодня с применением ультразвуковой технологии.
5. Ультразвук в современной химии
В настоящее время, как следует из литературных источников сформировано новое направление в химии - УЗ химия. Изучая химические превращения, происходящие под действием УЗ, ученые установили, что УЗ не только ускоряет окисление, но в некоторых случаях обеспечивают восстанавливающее действие. Таким образом, восстанавливается железо из окислов и солей.
Получены хорошие положительные результаты по интенсификации УЗ следующих химико-технологических процессов:
- электроосаждение, полимеризация, деполимеризация, окисление, восстановление, диспергирование, эмульгирование, коагуляция аэрозолей, гомогенизация, пропитка, растворение, распыление, сушка, горение, дубление и др.
Электроосаждение - осаждающийся металл приобретает мелкокристаллическую структуру, уменьшается пористость. Таким образом, осуществляемо меднение, лужение, серебрение. Процесс идет быстрее и качество покрытия выше, чем в обычных технологиях.
Получение эмульсий: вода и жир, вода и эфирные масла, вода и ртуть. Барьер несмешиваемости преодолевается благодаря УЗ.
Полимеризация (соединение молекул в одну) - степень полимеризации регулируется частотой УЗ.
Диспергирование - получение сверхтонких пигментов для получения красителей.
Сушка - без нагревания биологически активные вещества. В пищевой, фармакологической промышленности.
Распыление жидкостей и расплавов. Интенсификация процессов в распылительных сушках. Получение металлического порошка из расплавов. Эти распылительные устройства исключают вращающие и трущиеся детали.
УЗ усиливает эффективность горения в 20 раз жидких и твердых топлив.
Пропитка. В сотни раз быстрее проходит жидкость через капилляры пропитываемого материала. Используется при производстве рубероида, шпал, цементных плит, текстолита, гетинакса, пропитке древесины модифицированными смолами
6. УЗ в металлургии.
- Известно, что металлы при плавлении поглощают газы алюминия и его сплавы. 80% всех газов в расплавленном металле приходится на долю Н2. Это привод к ухудшению качества металла. Газы удается удалять с помощью УЗ, что позволило в нашей стране создать специальный технологический цикл и широко использовать его при производстве металлов.
- УЗ способствует закалке металлов
- В порошковой металлургии УЗ способствует слипанию частичек изготавливаемого материала. При этом отпадает необходимость в уплотнении большим давлением.
7. УЗ в горном деле.
Применение ультразвука позволяет реализовать следующие технологии:
- Удаление парафина со стенок нефтяных скважин;
- Исключение взрывов метана в шахтах за счет его распыления;
- УЗ обогащение руд (флотационный метод с применением УЗ).
8. УЗ в сельском хозяйстве.
Ультразвуковые колебания благаприятно влияют на семена и зерна перед их посадкой. Так, обработка семян томатов перед посадкой обеспечивает увеличение численности плодов, сокращает время созревания и увеличение количества витаминов.
Обработка УЗ семян дыни и кукурузы приводит к повышению урожайности на 40 %.
При обработке УЗ семян можно обеспечить дезинфекцию и ввести необходи-мые микроэлементы из жидкости
9. Пищевая промышленность.
На практике уже сегодня реализуются следующие технологии:
- Обработка молока для гомогенизации стерилизации;
- Обработка для увеличения сроков хранения и качества молока в заморо-женном виде
- Получение высококачественного порошкового молока;
- Получение эмульсий для хлебопечения;
- Обработка дрожжей на 15 % повышает их бродильную силу;
- Получение ароматических веществ, пюре, извлечение жира из печени;
- Выделение винного камня;
- Экстрагирование растительного и животного сырья;
- Производство духов (6...8 часов вместо года).
10. УЗ в биологии.
- Большие дозы ультразвука убивают микроорганизмы (стафилококки, стрептококки, вирусы);
- Малые интенсивности ультразвукового воздействия способствуют росту колоний микроорганизмов;
11. Влияние на человека.
Ультразвуковое воздействие с интенсивностью до 0,1…0,4 Вт/см носит лечебное воздействие. В Америке лечебным считается воздействие с интенсивностью до 0,8 Вт/см
12. В медицине.
Ультразвуковые скальпели, устройства для внешней и внутренней липосакции, лапороскопические инструменты, ингаляторы, массажеры находят самое широчайшее применение и позволяют лечить различные болезни.
Изложенный далее курс лекций предназначен для предварительного ознакомления студентов, аспирантов, инженеров и технологов различных производств с основами ультразвуковых технологий и призван дать основополагающие знания по теории формирования ультразвуковых колебаний и практике применения УЗ колебаний высокой интенсивности.

В последнее время широкое распространение в разных областях науки, техники и медицины получило использование ультразвука.

Что же это такое? Где применяются ультразвуковые колебания? Какую пользу они способны принести человеку?

Ультразвуком называют волнообразные колебательные движения с частотой более 15-20 килогерц, возникающие под воздействием окружающей среды и неслышимые для человеческого уха. Ультразвуковые волны легко фокусируются, что увеличивает интенсивность колебаний.

Источники ультразвука

В природе ультразвук сопровождает различные естественные шумы: дождь, грозу, ветер, водопад, морской прибой. Его способны издавать некоторые животные (дельфины, летучие мыши), что помогает им обнаруживать препятствия и ориентироваться в пространстве.

Все существующие искусственные источники ультразвука подразделяют на 2 группы:

  • генераторы - колебания возникают в результате преодоления препятствий в виде газа или жидкостной струи.
  • электроакустические преобразователи- трансформируют электрическое напряжение в механические колебания, что приводит к излучению акустических волн в окружающую среду.

Приемники ультразвука

Низкие и средние частоты ультразвуковых колебаний в основном воспринимаются электроакустическими преобразователями пьезоэлектрического типа. В зависимости от условий использования различают резонансные и широкополосные устройства.

Чтобы получить характеристики звукового поля, которые усреднены по времени, применяют термические приемники, представленные термопарами или термисторами, которые покрывают веществом, обладающим звукопоглощающими свойствами.

Оптические методы, в число которых входит дифракция света, способны оценить интенсивность ультразвука и звуковое давление.

Где применяются ультразвуковые волны?

Ультразвуковые волны нашли применение в разнообразных областях.

Условно сферы использования ультразвука можно разделить на 3 группы:

  • получение информации;
  • активное воздействие;
  • обработка и передача сигналов.

В каждом случае используется определенный диапазон частот.

Очистка ультразвуком

Ультразвуковое воздействие обеспечивает качественную очистку деталей. При простом полоскании деталей на них остается до 80% грязи, при вибрационной чистке - близко 55%, при ручной - около 20%, а при ультразвуковой - менее 0,5%.

Детали, обладающие сложной формой, можно избавить от загрязнений только при помощи ультразвука.

Используются ультразвуковые волны и при очистке воздуха и газов. Ультразвуковой излучатель, помещенный в пылеосадочную камеру, увеличивает результативность ее действия в сотни раз.

Механическая обработка хрупких и сверхтвердых материалов

Благодаря ультразвуку стала возможной сверхточная обработка материалов. С его помощью делают вырезы различной формы, матрицы, шлифуют, гравируют и даже сверлят алмазы.

Применение ультразвука в радиоэлектронике

В радиоэлектронике нередко возникает необходимость задержать электрический сигнал по отношению к какому-то другому сигналу. Для этого стали пользоваться ультразвуковыми линиями задержки, действие которых основано на преобразовании электрических импульсов в ультразвуковые волны. Также они способны преобразовывать механические колебания в электрические. В соответствии с этим линии задержки могут быть магнитострикционными и пьезоэлектрическими.

Использование ультразвука в медицине

Применение ультразвуковых колебаний в медицинской практике основано на возникающих в биологических тканях эффектах во время прохождения сквозь них ультразвука. Колебательные движения оказывают на ткани массажирующее действие, а при поглощении ультразвука они локально нагреваются. В то же время в организме наблюдаются различные физико-химические процессы, не вызывающие необратимых изменений. В результате ускоряются обменные процессы, что благоприятно сказывается на функционировании всего организма.

Применение ультразвука в хирургии

Интенсивное действие ультразвука вызывает сильное нагревание и кавитацию, что нашло применение в хирургии. Использование фокусного ультразвука при проведении операций дает возможность осуществлять локальное разрушающее действие в глубинных участках организма, в том числе в области головного мозга, не нанося вреда близлежащим тканям.

Хирурги в своей работе используют инструменты с рабочим концом в виде иглы, скальпеля или пилы. При этом хирургу не требуется прикладывать усилий, что уменьшает травматичность процедуры. В то же время ультразвук оказывает анальгезирующее и кровоостанавливающее действие.

Воздействие ультразвуком назначается при обнаружении в организме злокачественного новообразования, что способствует его разрушению.

Ультразвуковые волны обладает и антибактериальным действием. Поэтому они применяются для стерилизации инструментов и лекарственных средств.

Исследование внутренних органов

С помощью ультразвука осуществляют диагностическое обследование органов, расположенных в брюшной полости. Для этого применяют специальный аппарат.

Во время ультразвукового исследования удается обнаружить различные патологии и аномальные структуры, отличить доброкачественное новообразование от злокачественного, обнаружить инфекцию.

Ультразвуковые колебания используют при диагностике печени. Они позволяют определить болезни желчных потоков, исследовать желчный пузырь на присутствие в нем камней и патологических изменений, выявить цирроз и доброкачественные болезни печени.

Широкое применение нашло ультразвуковое исследование в области гинекологии, особенно при диагностике матки и яичников. Оно помогает обнаружить гинекологические заболевания и дифференцировать злокачественные и доброкачественные опухоли.

Используются ультразвуковые волны и при исследовании других внутренних органов.

Применение ультразвука в стоматологии

В стоматологии с помощью ультразвука удаляют зубной налет и камень. Благодаря ему наслоения снимаются быстро и безболезненно, без травмирования слизистой оболочки. В то же время происходит обеззараживание ротовой полости.

УЛЬТРАЗВУКОВЫЕ КОЛЕБАНИЯ , колебания, имеющие столь высокую частоту, что звуки от них не воспринимаются ухом. Частоты ультразвуковых колебаний начинаются с 15000-20000 Hz. О существовании ультразвуковых колебаний было известно уже давно, а после появления в 1883 г. свистка Гальтона, издававшего неслышные звуки, демонстрация их вошла в практику преподавания. Однако до последнего времени ультразвуковые колебания не имели никакого практического значения, т. к. не существовало достаточно мощных источников ультразвуковых колебаний. Началом оживления исследований ультразвуковых колебаний следует считать 1917-19 гг., когда Ланжевену в Париже удалось применить кварц для получения мощных ультразвуковых волн в воде. В особенности же оживились исследования ультразвуковых колебаний после работ Кэди, начавшихся в 1922 г.; это оживление продолжается и в данное время.

Способы получения ультразвуковых колебаний весьма разнообразны; почти все способы получения колебаний пригодны и для ультразвуковых колебаний. Не слишком мощные звуки проще всего получаются свистком Гальтона (фиг. 1), представляющим воздушный резонатор, собственная частота которого может меняться от 10000 до 30000 Hz и против отверстия которого направляется струя воздуха. Мощность такого свистка невелика, и во всех нижеописываемых способах источником энергии ультразвуковой частоты является переменный электрический ток, получаемый обычно от автоколебательных электрических контуров с электронной лампой; исключение представляет только поющая дуга, с которой Неклепаевым в 1911 г. были получены ультразвуковые колебания и волны с частотами до 3500000 Hz, что соответствует длине волны около 0,1 мм. Волны были получены в воздухе, и оказалось, что последний весьма сильно их поглощает. Первым мощным источником ультразвуковых колебаний был пьезоэлектрический передатчик Ланжевена, предназначенный для работ в воде. Основною частью передатчика Ланжевена является пластинка Q кварца (фиг. 2), вырезанная перпендикулярно к электрической оси и снабженная плотно приклеенными к ней обкладками А, А. Если подводить к ним переменный ток, то вследствие пьезоэлектрического пластинка кварца расширяется и сжимается с частотою, равной частоте переменного тока. При подходящем выборе частоты, когда собственные колебания передатчика попадают в резонанс с током, они становятся весьма мощными и излучают большую ультразвуковую энергию. В подводном передатчике Ланжевена только одна пластинка А находится в соприкосновении с водою, другая же заключена в корпус, показанный на фиг. 2 схематически пунктиром. Такие передатчики строят обычно на частоты около 30000-40000 Hz.

Вуд и Люмис употребляли для своих опытов пластинки с весьма тонкими обкладками, практически не влиявшими на собственную частоту пластинки. Т. к. общая толщина передатчика была у них много меньше, то частота ультразвуковых колебаний у них была много больше, именно порядка 5·10 5 Hz. Мясникову удалось дойти до частот 10 6 -10 7 Hz; передатчики в обоих случаях помещались в масляной ванне, где и распространялись ультразвуковые волны. Имеются успешные попытки получать ультразвуковые колебания достаточной мощности и путем использования магнитострикционных колебаний. Гейнес получил весьма сильные ультразвуки посредством возбуждения магнитострикционных колебаний в никелевой трубке, на нижнюю часть которой, находящуюся в воздухе, действовало переменное магнитное поле, а верхняя, находящаяся в жидкости, излучала звук. Неудовлетворительные результаты дает и электрическая искра. В настоящее время лучшим практическим способом для получения мощных ультразвуковых передатчиков является способ Ланжевена. Опыты по получению тем же способом ультразвуковых волн в воздухе показали, что отдача передатчиков этого типа в воздухе весьма незначительна.

Распространение ультразвуковых волн в газах и жидкостях в общем подчиняется тем же закономерностям, как и обычные звуковые волны, однако имеются и некоторые особенности. Ультразвуковые волны в воздухе и газах весьма значительно поглощаются и тем сильнее, чем выше частота ультразвуковых волн. Кратчайшие из них, исследованные Неклепаевым, ослабляются в 100 раз, уже пройдя 6 мм. Волны в 8 раз длиннее ослабляются во столько же раз, пройдя 40 см, и т. д. Кроме того замечена некоторая дисперсия ультразвуковых волн. При больших мощностях ультразвуковых передатчиков от них кроме ультразвукового излучения идет «ветер», впервые обнаруженный Мейсснером на кварцевых пластинках, наблюдающийся и у подводных передатчиков. Если, как в опытах Вуда и Люмиса, ультразвуковые волны падают на границу двух сред (в их опытах масло - воздух и масло - вода), то поверхность соприкосновения их сильно искажается вследствие т. н. звукового давления, образуются целые фонтаны мельчайших брызг, а в опытах с маслом и водой образуется эмульсия масла в воде; ультразвуковые волны, распространяющиеся вдоль по стеклянной палочке, вызывают ощущение ожога при прикосновении к ней, хотя термометр показывает только незначительное повышение температуры. Значительны также и физиология, действия мощных ультразвуковых волн: животные и растительные клетки и бактерии погибают в поле ультразвуковых волн, так что оказалось возможным этим способом стерилизовать молоко; поблизости передатчиков Ланжевена погибали рыбки. Возможно, при дальнейшем развитии, ультразвуковые волны получат терапевтическое значение. Вследствие чрезвычайно малой длины волны в поле ультразвуковых волн наблюдается дифракция световых волн, как в дифракционных решетках (Дебай и Сирс). Построены (Пирс) интерферометры для ультразвуковых волн, служащие для определения скоростей звука в газах и жидкостях. Разнообразны приложения ультразвуковых колебаний в технике , причем почти все основаны на свойствах именно кварцевых резонаторов. В виду того что затухание в колеблющихся кварцевых стержнях, пластинках и в особенности кольцах много меньше, чем в электрических контурах, последние заменяются первыми во всех случаях, когда необходим резко выраженный резонанс. Так получили большое распространение кварцевые стабилизаторы для; свойство кварца светиться при колебаниях, так как на нем появляются электрические заряды, использовано в волноуказателях (Гибе). Частота колебаний, даваемая кварцевыми кольцами, настолько постоянна, что Моррисон использовал их для электрических часов, превзошедших по своей точности все до того известные, т. ч. кварц в настоящее время является наилучшим стандартом частоты.

Подводные кварцевые передатчики для ультразвуковых колебаний получили еще незначительное распространение, однако вследствие их высокой частоты у них имеются два достоинства по сравнению с электромагнитными подводными передатчиками: они обладают, во-первых; большой направленностью, позволяя сосредоточить пучок исходящих от них лучей в узком телесном угле; во-вторых, они имеют (при хорошей конструкции, которая еще не достигнута вполне) большой КПД. В первую очередь они получили применение как приборы по определению глубин в т. н. эхолотах . Луч исходящего от передатчика звука направляется ко дну; отражаясь от него, возвращается к тому же передатчику, который его принимает; записывающая установка регистрирует время хода звука от передатчика до дна и обратно, откуда вычисляется глубина. Ультразвуковые передатчики употребляются для телеграфирования с судна на судно, между прочим, и для подводных лодок, для которых звуковая связь - почти единственно возможная; при этом ультразвуковой передатчик является и приемником. Были попытки применения ультразвуковых лучей для открытия подводных лодок и ледяных гор (Бойль и Рейд, 1926), для просвечивания пороков в металлах (С. Соколов), однако здесь еще не получены результаты достаточно надежные, чтобы соответствующие установки могли войти в практику.

Ультразвук - упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.

Источники Ультразвука

Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Наиболее распространены керамические преобразователи из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвукового пучка, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.Примеры излучателей:свисток Гальтона,жидкостный и ультразвуковой свисток,сирена.

Распространение ультразвука.

Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной

скоростью.

Дифракция, интерференция

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

Поглощение ультразвуковых волн

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань - 6,8 см; мышечная - 3,6 см; жировая и мышечная ткани вместе - 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот - это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Глубина проникновения ультразвуковых волн

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Преломление ультразвуковых волн

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис - дерма - фасция - мышца) будет наблюдаться преломление ультразвуковых волн.

Отражение ультразвуковых волн

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1-0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость - окружающие её ткани и ткани - воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца - надкостница - кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.