Нерастворимые основания натрия. Основания: классификация и химические свойства. Свойства основных оксидов и гидроксидов

Кислотные гидроксиды - это неорганические соединения гидроксильной группы -ОН и металла или неметалла со степенью окисления +5, +6. Другое название - кислородсодержащие неорганические кислоты. Их особенностью является отщепление протона при диссоциации.

Классификация гидроксидов

Гидроксиды также имеют название гидроокисей и водокисей. Они есть практически у всех химических элементов, некоторые имеют широкое распространение в природе, например, минералы гидраргиллит и брусит - это гидроокиси алюминия и магния соответственно.

Выделяют следующие виды гидроксидов:

  • основные;
  • амфотерные;
  • кислотные.

Классификация основывается на принадлежности оксида, образующего гидроокись, к основному, кислотному или амфотерному типу.

Общие свойства

Наибольший интерес вызывают кислотно-основные свойства оксидов и гидроксидов, так как от них зависит возможность протекания реакций. Будет ли гидроокись проявлять кислотные, основные или амфотерные свойства, зависит от прочности связи между кислородом, водородом и элементом.

На прочность влияют ионный потенциал, с увеличением которого ослабевают основные и усиливаются кислотные свойства гидроксидов.

Высшие гидроксиды

Высшими гидроокисями называют соединения, в которых образующий элемент находится в высшей степени окисления. Такие есть среди всех типов в классе. Пример основания - гидроксид магния. Гидроксид алюминия относится к амфотерным, а хлорная кислота может классифицироваться как кислотный гидроксид.

Изменение характеристик этих веществ в зависимости от образующего элемента можно проследить по периодической системе Д. И. Менделеева. Кислотные свойства высших гидроксидов усиливаются слева направо, а металлические, соответственно, ослабевают в этом направлении.

Основные гидроксиды

В узком смысле этот тип называется основанием, так как при его диссоциации отщепляется анион ОН. Самые известные из таких соединений - щелочи, например:

  • Гашеная известь Са(ОН) 2 , используемая при побелке помещений, дублении кож, для приготовления противогрибковых жидкостей, строительных растворов и бетона, умягчения воды, производства сахара, хлорной извести и удобрений, каустификации карбонатов натрия и калия, нейтрализации кислых растворов, обнаружения углекислого газа, дезинфекции, снижения удельного сопротивления грунта, в качестве пищевой добавки.
  • Каустический поташ КОН, применяемый в фотографии, нефтепереработке, пищевом, бумажном и металлургическом производстве, а также как щелочной элемент питания, нейтрализатор кислот, катализатор, газоочиститель, регулятор водородного показателя, электролит, компонент моющих средств, буровых растворов, красителей, удобрений, калийных органических и неорганических веществ, пестицидов, фармацевтических препаратов для лечения бородавок, мыла, синтетического каучука.
  • NaOH, необходимый для целлюлозно-бумажной промышленности, омыления жиров при производстве моющих средств, нейтрализации кислот, изготовления биодизельного топлива, растворения засоров, дегазации отравляющих веществ, обработки хлопка и шерсти, мойки пресс-форм, пищевого производства, косметологии, фотографии.

Основные гидроксиды образуются как результат взаимодействия с водой соответствующих оксидов металлов, в подавляющем большинстве случаев со степенью окисления +1 или +2. К таким относятся щелочные, щелочноземельные и переходные элементы.

Кроме того, основания можно получить следующими способами:

  • взаимодействием щелочи с солью малоактивного металла;
  • реакцией между щелочным либо щелочноземельным элементом и водой;
  • электролизом водного раствора соли.

Кислотные и основные гидроксиды взаимодействуют между собой с образованием соли и воды. Такая реакция называется нейтрализацией и имеет большое значение для титриметрического анализа. Кроме того, она используется в быту. При проливе кислоты нейтрализовать опасный реагент можно содой, а для щелочи используют уксус.

Кроме того, основные гидроокиси смещают ионное равновесие при диссоциации в растворе, что проявляется в изменении цветов индикаторов, и вступают в обменные реакции.

При нагревании нерастворимые соединения разлагаются на оксид и воду, а щелочи плавятся. и кислотный оксид образуют соль.

Амфотерные гидроксиды

Некоторые элементы в зависимости от условий проявляют то основные, то кислотные свойства. Гидроксиды на их основе называются амфотерными. Их легко определить по входящему в состав металлу, имеющему степень окисления +3, +4. Например, белое студенистое вещество - гидроксид алюминия Al(ОН) 3 , используемый при очистке воды благодаря его высокой адсорбирующей способности, изготовлении вакцин в качестве вещества, усиливающего иммунный ответ, в медицине для лечения кислотозависимых заболеваний желудочно-кишечного тракта. Также он часто включается в состав пластиков для подавления горения и выступает в качестве носителя для катализаторов.

Но есть и исключения, когда значение степени окисления элемента +2. Это характерно для бериллия, олова, свинца и цинка. Гидроксид последнего металла Zn(ОН) 2 находит широкое применение в химических отраслях, в первую очередь, для синтеза различных соединений.

Получить амфотерную гидроокись можно, проведя реакцию между раствором соли переходного металла и разбавленной щелочью.

Амфотерный гидроксид и кислотный оксид, щелочь или кислота образуют соль при взаимодействии. Нагревание гидроокиси приводит к ее разложению на воду и метагидроксид, который при дальнейшем нагревании преобразуется в оксид.

Амфотерные и кислотные гидроксиды одинаково ведут себя в щелочной среде. При взаимодействии с кислотами амфотерные гидроокиси выступают в роли оснований.

Кислотные гидроксиды

Этот тип характеризуется наличием в составе элемента в степени окисления от +4 до +7. В растворе они способны отдавать катион водорода или принимать электронную пару и образовывать ковалентную связь. Чаще всего они имеют агрегатное состояние жидкости, но есть среди них и твердые вещества.

Образует гидроксид кислотный оксид, способный к солеобразованию и содержащий в составе неметалл или переходный металл. Оксид получается в результате окисления неметалла, разложения кислоты или соли.

Кислотные проявляются в их способности окрашивать индикаторы, растворять активные металлы с выделением водорода, реагировать с основаниями и основными оксидами. Их отличительной особенностью является участие в окислительно-восстановительных реакциях. Во время химического процесса они присоединяют к себе отрицательно заряженные элементарные частицы. Способность выступать в качестве акцептора электронов ослабевает при разбавлении и превращении в соли.

Таким образом, можно выделить не только кислотно-основные свойства гидроксидов, но и окислительные.

Азотная кислота

HNO 3 считается сильной одноосновной кислотой. Она очень ядовита, оставляет язвы на коже с желтым окрашиванием покровов, а ее пары моментально раздражают слизистую дыхательных путей. Устаревшее название - крепкая водка. Она относится к кислотным гидроксидам, в водных растворах полностью диссоциирует на ионы. Внешне выглядит как бесцветная, дымящаяся на воздухе жидкость. Концентрированным считается водный раствор, в который входит 60 - 70 % вещества, а если содержание превышает 95 %, его называют дымящейся азотной кислотой.

Чем выше концентрация, тем более темной выглядит жидкость. Она может иметь даже бурую окраску из-за разложения на оксид, кислород и воду на свету или при небольшом нагревании, поэтому хранить ее следует в емкости из темного стекла в прохладном месте.

Химические свойства кислотного гидроксида таковы, что перегонять без разложения его можно лишь при пониженном давлении. С ним реагируют все металлы кроме золота, некоторых представителей платиновой группы и тантала, но конечный продукт зависит от концентрации кислоты.

Например, 60%-е вещество при взаимодействии с цинком дает диоксид азота в качестве преобладающего побочного продукта, 30%-е - монооксид, 20%-е - оксид диазота (веселящий газ). Еще меньшие концентрации в 10% и 3% дают простое вещество азот в виде газа и аммонийную селитру соответственно. Таким образом, на основе кислоты можно получать различные нитросоединения. Как видно из примера, чем меньше концентрация, тем глубже восстановление азота. Также на это влияет активность металла.

Растворить золото или платину вещество может только в составе царской водки - смеси из трех частей соляной и одной азотной кислот. Стекло и политетрафторэтилен к нему устойчивы.

Помимо металлов вещество вступает в реакцию с основными и амфотерными оксидами, основаниями, слабыми кислотами. Во всех случаях в результате получаются соли, с неметаллами - кислоты. Не все реакции происходят безопасно, так, амины и скипидар самовоспламеняются при контакте с гидроксидом в концентрированном состоянии.

Соли называются нитратами. При нагревании они разлагаются или проявляют окислительные свойства. На практике используются как удобрения. В природе практически не встречаются из-за высокой растворимости, поэтому все соли кроме калийных и натриевых получают искусственно.

Саму кислоту получают из синтезированного аммиака и в случае необходимости концентрируют несколькими способами:

  • смещением равновесия путем повышения давления;
  • нагреванием в присутствии серной кислоты;
  • дистилляцией.

Далее ее используют в производстве минеральных удобрений, красителей и лекарств, военной промышленности, станковой графике, ювелирном деле, органическом синтезе. Изредка разбавленную кислоту применяют в фотографии для подкисления тонирующих растворов.

Серная кислота

Н 2 SO 4 - сильная двухосновная кислота. Выглядит как бесцветная тяжелая маслянистая жидкость, не обладает запахом. Устаревшее название - купорос (водный раствор) или купоросное масло (смесь с сернистым ангидридом). Такое наименование было присвоено из-за того, что в начале XIX века серу производили на купоросных заводах. В дань традиции кристаллогидраты сульфатов по сей день называют купоросом.

Производство кислоты налажено в промышленных масштабах и составляет около 200 миллионов тонн в год. Ее получают окислением сернистого газа кислородом или диоксидом азота в присутствии воды либо взаимодействием сероводорода с сульфатом меди, серебра, свинца или ртути. Получающееся в итоге концентрированное вещество является сильным окислителем: вытесняет галогены из соответствующих кислот, преобразует углерод и серу в кислотные оксиды. Гидроксид при этом восстанавливается до сернистого газа, сероводорода или серы. Разбавленная кислота обычно не проявляет окислительных свойств и образует средние и кислые соли или эфиры.

Обнаружить и идентифицировать вещество можно по реакции с растворимыми солями бария, в результате которой выпадает белый осадок сульфата.

В дальнейшем кислота используется в обработке руд, производстве минеральных удобрений, химических волокон, красителей, дымообразующих и взрывчатых веществ, различных отраслях промышленности, органическом синтезе, в качестве электролита, для получения минеральных солей.

Но применение сопряжено с определенными опасностями. Едкое вещество вызывает химические ожоги при соприкосновении с кожей или слизистыми оболочками. При вдыхании сначала появляется кашель, а впоследствии - воспалительные заболевания гортани, трахеи, бронхов. Превышение предельно допустимой концентрации в 1 мг на кубический метр смертельно опасно.

Столкнуться с сернокислотными парами можно не только на специализированных производствах, но и в атмосфере города. Такое случается, когда химические и металлургические предприятия осуществляют выбросы оксидов серы, которые затем выпадают в виде кислотных дождей.

Все эти опасности привели к тому, что оборот содержащей более 45% массовой концентрации, в России ограничен.

Сернистая кислота

Н 2 SO 3 - более слабая кислота по сравнению с серной. Ее формула отличается всего на один атом кислорода, но это делает ее неустойчивой. В свободном состоянии она не выделена, существует только в разбавленных водных растворах. Идентифицировать их можно по специфическому резкому запаху, напоминающему прогоревшую спичку. А подтвердить наличие сульфит-иона - по реакции с перманганатом калия, в результате которой красно-фиолетовый раствор обесцвечивается.

Вещество в разных условиях может выступать в роли восстановителя и окислителя, образовывать кислые и средние соли. Применяется оно для пищевого консервирования, получения целлюлозы из древесины, а также для деликатного отбеливания шерсти, шелка и других материалов.

Ортофосфорная кислота

Н 3 РО 4 - кислота средней силы, которая выглядит как бесцветные кристаллы. Также ортофосфорной кислотой называют 85%-ный раствор этих кристаллов в воде. Он выглядит как сиропообразная жидкость без запаха, склонная к переохлаждению. Нагревание выше 210 градусов Цельсия приводит к ее превращению в пирофосфорную кислоту.

Ортофосфорная кислота хорошо растворяется в воде, нейтрализуется щелочами и гидратом аммиака, реагирует с металлами, образует полимерные соединения.

Получить вещество можно разными способами:

  • растворением красного фосфора в воде под давлением, при температуре 700-900 градусов, с использованием платины, меди, титана или циркония;
  • кипячением красного фосфора в концентрированной азотной кислоте;
  • добавлением горячей концентрированной азотной кислоты к фосфину;
  • окислением фосфина кислорода при 150 градусах;
  • воздействием на декаоскид тетрафосфора температурой в 0 градусов, затем ее постепенным повышением до 20 градусов и плавным переходом к кипячению (на всех этапах нужна вода);
  • растворением пентахлорида или оксид-трихлорида фосфора в воде.

Применение у получаемого продукта широкое. С его помощью снижают поверхностное натяжение и удаляют оксиды с поверхностей, готовящихся к пайке, очищают металлы от ржавчины и создают на их поверхности защитную пленку, препятствующую дальнейшей коррозии. Кроме того, ортофосфорную кислоту используют в промышленных морозильных установках и для исследований в молекулярной биологии.

Также соединение входит в состав авиационных гидрожидкостей, пищевых добавок и регуляторов кислотности. Применяется в звероводстве для профилактики мочекаменной болезни у норок и в стоматологии для манипуляций, предшествующих пломбированию.

Пирофосфорная кислота

Н 4 Р 2 О 7 - кислота, характеризующаяся как сильная по первой ступени и слабая по остальным. Плавится она без разложения, так как для этого процесса нужно нагревание в вакууме или присутствие сильных кислот. Нейтрализуется щелочами и реагирует с перекисью водорода. Получают ее одним из следующих способов:

  • разложением декаоксида тетрафосфора в воде при нулевой температуре, а затем его нагреванием до 20 градусов;
  • нагреванием ортофосфорной кислоты до 150 градусов;
  • взаимодействием концентрированной фосфорной кислоты с декаоксидом тетрафосфора при 80-100 градусах.

Применяется продукт в основном для производства удобрений.

Помимо этих, есть множество других представителей кислотных гидроокисей. Каждая из них имеет свои особенности и характеристики, но в общем кислотные свойства оксидов и гидроксидов заключаются в их способности отщеплять водород, разлагаться, взаимодействовать с щелочами, солями и металлами.

Металла и гидроксильной группы (ОН). Например, гидроксид натрия - NaOH , гидроксид кальция - Ca (OH ) 2 , гидроксид бария - Ba (OH ) 2 и т.д.

Получение гидроксидов.

1. Реакция обмена:

CaSO 4 + 2NaOH = Ca(OH) 2 + Na 2 SO 4,

2. Электролиз водных растворов солей:

2KCl + 2H 2 O = 2KOH + H 2 + Cl 2 ,

3. Взаимодействие щелочных и щелочно-земельных металлов или их оксидов с водой:

К + 2 H 2 O = 2 KOH + H 2 ,

Химические свойства гидроксидов.

1. Гидроксиды имеют щелочной характер среды.

2. Гидроксиды растворяются в воде (щелочи) и бывают нерастворимыми. Например, KOH - растворяется в воде, а Ca (OH ) 2 - малорастворим, имеет раствор белого цвета. Металлы 1-ой группы периодической таблицы Д.И. Менделеева дают растворимые основания (гидроксиды).

3. Гидроксиды разлагаются при нагреве:

Cu (OH ) 2 = CuO + H 2 O .

4. Щелочи реагируют с кислотными и амфотерными оксидами :

2KOH + CO 2 = K 2 CO 3 + H 2 O.

5. Щелочи могут реагировать с некоторыми неметаллами при различных температурах по-разному:

NaOH + Cl 2 = NaCl + NaOCl + H 2 O (холод),

NaOH + 3 Cl 2 = 5 NaCl + NaClO 3 + 3 H 2 O (нагрев).

6. Взаимодействуют с кислотами:

KOH + HNO 3 = KNO 3 + H 2 O .

Гидраты оксидов имеют общее название- гидрооксиды . Основаниями(основными гидрокисдами) называются гидраты основных оксидов.Общая формулы- Me ( OH ) n . Количество гидроксильных групп(OH) в молекулу определяет ее кислотность.

Большинство оснований нерастворимо в воде, растворимы только Гидроксиды щелочных и щёлочноземельных металлов(их называют щелочами ), а также аммония . В водных растворах основания диссоцируют на катион металла гидроксильную группу, амфотерные гидроксиды диссоцируют одновременно и как кислоты, и как основания . Многокислотные основания диссоцируют ступенчато:

Me x + +xOH - Me(OH) x ≡H x MeO x x H + +MeO x x - (диссоциация амфотерного гидроксида(общая схема))

*Это интересно

Сейчас существует 3 основных теории кислот и оснований:

1. Протолитическая теория Брёнстеда - Лоури .В ней кислота- молекула или ион, способная быть в данной реакции донорами протонов , соответственно основаниями являются молекулы или ионы, присоединяющие протоны. И кислоты, и основания получили название протолиты.

2. Теория кислот и оснований Льюиса . В ней кислота-любая частица способная принимать пару электронов, а основание- частица, способная отдавать эту пару. Теория Льюиса очень похожа на теорию Брёнстеда - Лоури, но отличается от неё тем, что охватывает более широкий круг соединений.

3. Теория Усановича. В ней кислота - это частица, которая может отщеплять катионы, включая протон, или присоединять анионы, включая электрон. Основание - частица, которая может присоединять протон и другие катионы или отдавать электрон и другие анионы .

Номенклатура:

Неорганические соединения, содержащие группы -OH, называются гидроксидами. NaOH - гидроксид натрия, Fe(OH) 2 - гидроксид железа(II), Ba (OH )2-гидроксид бария. (в скобочках указана валентность элемента (если она переменная))

Для соединений, содержащих кислород, используют названия гидроксидов, с приставкой «мета»: AlO(OH) - метагидроксид алюминия, Mn O(OH) - метагидроксид марганца

Для оксидов, гидратированных неопределённым числом молекул воды, Me 2 O n ∙ n H 2 O, недопустимо писать формулы типа Me(OH) n . Называть такие соединениями гидроксидами также не рекомендуется. Примеры названий: Tl 2 O 3 ∙n H 2 O - полигидрат оксида таллия(III), MnO 2 ∙n H 2 O - полигидрат оксида марганца(IV)

Так же существуют гидраты -NH 3 ∙H 2 O (гидрат аммиака ) = NH 4 OH (гидроксид аммония).

Основания дают соли при взаимодействии с кислотами (реакция нейтрализации), при взаимодействии с кислотным оксидом, амфотерным гидроксидом, амфотерным металлом, амфотерным оксидом, неметаллом.

NaOH+HCl→NaCl+H 2 O (реакция нейтрализации)

2NaOH+2NO 2 →NaNO 3 +NaNO 2 +H 2 O (реакция с смешанным ангидридом)

Cl 2 +2KOH→KCl+KClO+H 2 O (реакция идёт без нагреванием)

Cl 2 +6KOH→5KCl+KClO 3 +3H 2 O (реакция идёт с нагреванием)

3S+6NaOH→2Na 2 S+Na 2 SO 3 +3H 2 O

2Al+2NaOH+6H 2 O→2Na+3H 2

Al 2 O 3 + 6NaOH→ 2Na 3 AlO 3 +3H 2 O

NaOH+Al(OH) 3 →Na

Способы получения оснований:

1. Взаимодействие щелочных и щелочноземельных металлов, и аммиака с водой. Металлы (только щелочные или щелочноземельные), взаимодействуя с водой образуют щелочь и выделяют водород. Аммиак взаимодействуя с водой образует неустойчивое соединение NH 4 OH:

2Na+2H 2 O→2NaOH+H 2

Ba+2H 2 O→ Ba ( OH ) 2 +H 2

NH 3 +H 2 O↔NH 4 OH

2. Непосредственное присоединение основными оксидами воды. Большинство основных оксидов воду непосредственно не присоединяют, только оксиды ЩМ(щелочные металлы) и ЩЗМ(щелочноземельные металлы), присоединяя воду, образуют основания:

Li 2 O+H 2 O→2LiOH

BaO+H 2 O→ Ba ( OH ) 2

3. Взаимодействие с солями . Это один из наиболее распространённых способов получения солей и оснований. Так как это реакция ионного обмена, то оба реагента должны быть растворимы, а один из продуктов- нет:

NaOH+FeCl 3 →3NaCl+Fe(OH) 3

Na 3 PO 4 +3LiOH→3NaOH+Li 3 PO 4

4. Электролиз растворов солей щелочных и щелочноземельных металлов .При электролизе растворов данных солей металлы никогда не выделяются на катоде(вместо них выделяется водород из воды:и 2H 2 O-2e - =H 2 ↓+2OH - ), а на аноде восстанавливается галоген (все, кроме F - ), или в случае кислородосодержащей кислоты идёт следующая реакция:

2H 2 O-4e - =4H + +O 2 ,галогены восстанавливаются по схеме: 2X - -2e - =X 2 (где X – галоген)

2NaCl+2H 2 O→2NaOH+Cl 2 +H 2

В водном растворе скапливается щелочь, которую затем можно выделить, упаривая раствор.

Это интересно:

Пероксиды и надпероксиды щелочных и щелочноземельных металлов реагируют с водой, образуя соответствующий гидроксид и пероксид водорода.

Na 2 O 2 +2 H 2 O →2 NaOH + H 2 O 2

4NaO 2 + 2 H 2 O →4 Na OH + 3O 2

Теория Брёнстеда -Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности K b . Например, для аммиака как основания Брёнстеда можно записать:

NH 3 + H 2 O NH 4 + +OH -

Для более удобного отображения константы основности используют отрицательный логарифм: pK b = -log K b . Так же логично, что сила оснований возрастает в ряду напряжения металлов справа налево.

NaOH + C 2 H 5 Cl NaCl + C 2 H 4 + H 2 O (метод получения алкенов, этилена (этена) в данном случае), использовался спиртовой раствор гидроксида натрия.

NaOH + C 2 H 5 Cl NaCl + C 2 H 5 OH (метод получения спиртов, этанола в данном случае), использовался водный раствор гидроксида натрия.

2 NaOH + C 2 H 5 Cl →2 NaCl + C 2 H 2 + H 2 O (метод получения алкинов, ацетилена (этина) в данном случае), использовался спиртовой раствор гидроксида натрия.

C 6 H 5 OH (фенол) + NaOH C 6 H 5 ONa + H 2 O

Продуктом замещения одного из водородов аммиака на гидроксильную группу является гидрокисламин( NH 2 OH ). Он образуется при электролизе азотной кислоты (с ртутными или свинцовыми катодами), в результате ее восстановления атомарным водородом, образующимся так как параллельно происходит электролиз воды:

HNO 3 +6 H NH 2 OH +2 H 2 O

2 H 2 O → 2 H 2 + O 2

Амфотерные гидроксиды.

Это соединения дают соли как при взаимодействии с кислотами (средние соли) так и при взаимодействиями с основаниями (комплексные соединения). Все амфотерные гидроксиды мало растворимы. Их диссоциацию можно рассмотреть, как по основному, так и по кислотному типу, но поскольку эти 2 процесса идут одновременно, то процесс можно записать следующим образом (Me-металл):

Me x+ +xOH - Me(OH) x ≡H x MeO x x H + +MeO x x-

Так как амфотерные гидроксиды есть гидраты амфотерных оксидов, их наиболее яркие представители – гидраты следующих оксидов:ZnO,Al 2 O 3 ,BeO, SnO,PbO,Fe 2 O 3 ,Cr 2 O 3 ,MnO 2 ,TiO 2 .

Примеры реакций:

NaOH+Al(OH) 3 ↓→Na - гидроксоаллюминат натрия

Al(OH) 3 ↓+3HCl→AlCl 3 +3H 2 O

Но, зная, что амфотерные гидроксиды диссоциируют и по кислотному типу тоже, можно записать их взаимодействие с щелочами по другому уравнению:

Zn(OH) 2 ↓+2NaOH→Na 2 (в растворе)

H 2 ZnO 2 ↓+2NaOH→Na 2 ZnO 2 +H 2 O (в расплаве)

1)H 3 AlO 3 ↓+3NaOH→Na 3 AlO 3 +3H 2 O (здесь образовался ортоалюминат натрия (реакция происходила в растворе), но если реакция будет при сплавлении, то будет образовываться метаалюминат натрия)

2) HAlO 2 +NaOH→NaAlO 2 +H 2 O (образовался метааллюминат натрия, значит в реакции 1 и2 вступали ортоалюминевая и металюминевая кислоты соответственно)

Получают амфотерные гидроксиды обычно взаимодействием их солей с щелочами, количество которых точно рассчитывают по уравнению реакции:

3NaOH+ Cr(NO 3 ) 3 →3NaNO 3 +Cr(OH) 3

2NaOH+ Pb(CH 3 COO) 2 →2CH 3 COONa+Pb(OH) 2

Редактор: Харламова Галина Николаевна

3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома ( II ) - Cr (OH ) 2 , гидроксид хрома ( III ) - Cr (OH ) 3 .

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

Однокислотные основания - KOH , NaOH ;

Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;

Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,

K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,

Al(OH) 3 + KOH = K.

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ,

SrO + H 2 O = Sr (OH ) 2 .

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,

Ca (OH ) 2 = CaO + H 2 O .

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O ,

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

2KOH + CO 2 = K 2 CO 3 + H 2 O,

2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.

4. Основания могут вступать в реакцию с кислыми солями:

2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,

Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.

Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,

3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,

Zn + 2KOH + 2H 2 O = K 2 + H 2 .

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).

М.В. Андрюxoва, Л.Н. Бopoдина


2NaOH + CO 2 = Na 2 CO 3 + H 2 O,

основание кислотный соль

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O,

основание кислота соль

2NaOH + PbO = Na 2 PbO 2 + H 2 O,

основание амфотерный соль

2NaOH + Pb(OH) 2 = Na 2 PbO 2 + 2H 2 O,

основание амфотерный соль

гидроксид

2H 3 PO 4 + 3Na 2 O = 2Na 3 PO 4 + 3H 2 O,

кислота основной соль

H 2 SO 4 + SnO = SnSO 4 + H 2 O,

кислота амфотерный соль

H 2 SO 4 + Sn(OH) 2 = SnSO 4 + 2H 2 O.

кислота амфотерный соль

гидроксид

Амфотерные гидроксиды в реакциях с кислотами проявляют основные свойства:

2Al(OH) 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 6H 2 O,

со щелочами (основаниями) – кислотные свойства:

H 3 AlO 3 + 3NaOH = Na 3 AlO 3 + 3H 2 O,

или H 3 AlO 3 + NaOH = NaAlO 2 + 2H 2 O.

    Основания и кислоты реагируют с солями, если в результате образуется осадок или слабый электролит. Слабые кислоты – H 3 PO 4 , H 2 CO 3 , H 2 SO 3 , H 2 SiO 3 и другие.

2NaOH + NiSO 4 = Ni(OH) 2  + Na 2 SO 4 ,

основание соль

3H 2 SO 4 + 2Na 3 PO 4 = 2H 3 PO 4 + 3Na 2 SO 4

кислота соль

Бескислородные кислоты вступают в те же реакции, что и ранее рассмотренные кислородсодержащие кислоты.

Пример. Составьте формулы гидроксидов, соответствующих оксидам: а) FeO; б) N 2 O 3; в) Cr 2 O 3 . Назовите соединения.

Решение

а) FeO – основной оксид, следовательно, соответствующий гидроксид – основание, в формуле основания число гидроксогрупп (OH) равно степени окисления атома металла; формула гидроксида железа (II) – Fe(OH) 2 .

б) N 2 O 3 – кислотный оксид, следовательно, соответствующий гидроксид – кислота. Формулу кислоты можно получить, исходя из представления кислоты как гидрата соответствующего оксида:

N 2 O 3 . H 2 O = (H 2 N 2 O 4) = 2HNO 2 – азотистая кислота.

в) Cr 2 O 3 – амфотерный оксид, следовательно, соответствующий гидроксид амфотерен. Амфотерные гидроксиды записывают в форме оснований – Cr(OH) 3 – гидроксид хрома (III).

Соли

Соли – вещества, которые состоят из основных и кислотных остатков. Так, соль CuSO 4 состоит из основного остатка – катиона металла Cu 2+ и кислотного остатка– SO 4 2  .

По традиционной номенклатуре названия солей кислородных кислот составляют следующим образом: к корню латинского названия центрального атома кислотного остатка добавляют окончание –ат (при высших степенях окисления центрального атома) или –ит (для более низкой степени окисления) и далее – остаток от основания в родительном падеже, например: Na 3 PO 4 – фосфат натрия, BaSO 4 – сульфат бария, BaSO 3 – сульфит бария. Названия солей бескислородных кислот образуют, добавляя к корню латинского названия неметалла суффикс –ид и русское название металла (остатка от основания), например CaS – сульфид кальция.

Средние соли не содержат в своем составе способных замещаться на металл ионов водорода и гидроксогрупп, например CuCl 2 , Na 2 CO 3 и другие.

Химические свойства солей

Средние соли вступают в реакции обмена со щелочами, кислотами, солями. Примеры соответствующих реакций см. выше.

Кислые соли содержат в составе кислотного остатка ион водорода, например NaHCO 3 , CaHPO 4 , NaH 2 PO 4 и т.д. В названии кислой соли ион водорода обозначают приставкой гидро-, перед которой указывают число атомов водорода в молекуле соли, если оно больше единицы. Например, названия солей вышеприведенного состава соответственно – гидрокарбонат натрия, гидрофосфат кальция, дигидрофосфат натрия.

Кислые соли получают

    взаимодействием основания и многоосновной кислоты при избытке кислоты:

Ca(OH) 2 + H 3 PO 4 = CaHPO 4 + 2H 2 O;

    взаимодействием средней соли многоосновной кислоты и соответствующей кислоты или более сильной кислоты, взятой в недостатке:

CaCO 3 + H 2 CO 3 = Ca(HCO 3) 2 ,

Na 3 PO 4 + HCl = Na 2 HPO 4 + NaCl.

Основные соли содержат в составе остатка основания гидроксогруппу, например CuOHNO 3 , Fe(OH) 2 Cl. В названии основной соли гидроксогруппу обозначают приставкой гидроксо-, например, названия вышеприведённых солей соответственно: гидроксонитрат меди (II), дигидроксохлорид железа (III).

Основные соли получают

    взаимодействием многокислотного (содержащего в своем составе более одной гидроксогруппы) основания и кислоты при избытке основания:

Cu(OH) 2 + HNO 3 = CuOHNO 3 + H 2 O;

    взаимодействием соли, образованной многокислотным основанием, и основания, взятого в недостатке:

FeCl 3 + NaOH = FeOHCl 2  + NaCl,

FeCl 3 + 2NaOH = Fe(OH) 2 Cl + 2NaCl.

Кислые и основные соли обладают всеми свойствами солей. В реакциях со щелочами кислые соли, а с кислотами – основные соли переходят в средние.

Na 2 HPO 4 + NaOH = Na 3 PO 4 + H 2 O,

Na 2 HPO 4 + 2HCl = H 3 PO 4 + 2NaCl,

FeOHCl 2 + HCl = FeCl 3 + H 2 O,

FeOHCl 2 + 2NaOH = Fe(OH) 3  + 2NaCl.

Пример 1 . Составьте формулы всех солей, которые могут быть образованы основанием Mg(OH) 2 и кислотой H 2 SO 4 .

Решение

Формулы солей составляем из возможных основных и кислотных остатков, соблюдая правило электронейтральности. Возможные основные остатки – Mg 2+ и MgOH + , кислотные остатки – SO 4 2- и HSO 4  . Заряды сложных основных и кислотных остатков равны сумме степеней окисления составляющих их атомов. Сочетанием основных и кислотных остатков составляем формулы возможных солей: MgSO 4 – средняя соль – сульфат магния; Mg(HSO 4) 2 – кислая соль – гидросульфат магния; (MgOH) 2 SO 4 – основная соль – гидроксосульфат магния.

Пример 2. Напишите реакции образования солей при взаимодействии оксидов

а) PbO и N 2 O 5 ; б) PbO и Na 2 O.

Решение

В реакциях между оксидами образуются соли, основные остатки которых формируются из основных оксидов, кислотные остатки – из кислотных оксидов.

а) В реакции с кислотным оксидом N 2 O 5 амфотерный оксид PbO проявляет свойства основного оксида, следовательно, основной остаток образующейся соли – Pb 2+ (заряд катиона свинца равен степени окисления свинца в оксиде), кислотный остаток – NO 3  (кислотный остаток соответствующей данному кислотному оксиду азотной кислоты). Уравнение реакции

PbO + N 2 O 5 = Pb(NO 3) 2 .

б) В реакции с основным оксидом Na 2 O амфотерный оксид PbO проявляет свойства кислотного оксида, кислотный остаток образующейся соли (PbO 2 2 ) находим из кислотной формы соответствующего амфотерного гидроксида Pb(OH) 2 = H 2 PbO 2 . Уравнение реакции