Основной закон динамики вращательного движения определение. Основной закон динамики вращательного движения

В этой главе твердое тело рассматривается как совокупность материальных точек, не смещающихся друг относительно друга. Такое не поддающееся деформации тело называется абсолютно твердым.

Пусть твердое тело произвольной формы вращается под действием силы вокруг неподвижной оси 00 (рис. 30). Тогда все его точки описывают окружности с центрами на этой оси. Понятно, что все точки тела имеют одинаковую угловую скорость и одинаковое угловое ускорение (в данный момент времени).

Разложим действующую силу на три взаимно перпендикулярные составляющие: (параллельную оси), (перпендикулярную оси и лежащую на линии, проходящей через ось) и (перпендикулярную Очевидно, что вращение тела вызывает только составляющая являющаяся касательной к окружности, описываемой точкой приложения силы. Составляющие вращения не вызывают. Назовем вращающей силой. Как известно из школьного курса физики, действие силы зависит не только от ее величины, но и от расстояния точки ее приложения А до оси вращения, т. е. зависит от момента силы. Моментом вращающей силы (вращающим моментом) называется произведение вращающей силы на радиус окружности описываемой точкой приложения силы:

Мысленно разобьем все тело на очень малые частицы - элементарные массы. Хотя сила приложена к одной точке А тела, ее вращающее действие передается всем частицам: к каждой элементарной массе будет приложена элементарная вращающая сила (см. рис. 30). Согласно второму закону Ньютона,

где линейное ускорение, сообщаемое элементарной массе. Умножая обе части этого равенства на радиус окружности, описываемой элементарной массой, и вводя вместо линейного угловое ускорение (см. § 7), получим

Учитывая, что вращающий момент, приложенный к элементарной массе, и обозначая

где момент инерции элементарной массы (материальной точки). Следовательно, моментом инерции материальной точки относительно некоторой оси вращения называется произведение массы материальной точки на квадрат ее расстояния до этой оси.

Суммируя вращающие моменты приложенные ко всем элементарным массам, составляющим тело, получим

где вращающий момент, приложенный к телу, т. е. момент вращающей силы момент инерции тела. Следовательно, моментом инерции тела называется сумма моментов инерции всех материальных точек, составляющих тело.

Теперь можно переписать формулу (3) в виде

Формула (4) выражает основной закон динамики вращения (второй закон Ньютона для вращательного движения):

момент вращающей силы, приложенной к телу, равен произведению момента инерции тела на угловое ускорение.

Из формулы (4) видно, что угловое ускорение, сообщаемое телу вращающим моментом, зависит от момента инерции тела; чем больше момент инерции, тем меньше угловое ускорение. Следовательно, момент инерции характеризует инерционные свойства тела при вращательном движении подобно тому, как масса характеризует инерционные свойства тела при поступательном движении, Однако в отличие от массы момент инерции данного тела может иметь множество значений в соответствии с множеством возможных осей вращения. Поэтому, говоря о моменте инерции твердого тела, необходимо указывать, относительно какой оси он рассчитывается. На практике обычно приходится иметь дело с моментами инерции относительно осей симметрии тела.

Из формулы (2) следует, что единицей измерения момента инерции является килограмм-квадратный метр

Если вращающий момент и момент инерции тела то формулу (4) можно представить в виде


1.8.

Момент импульса тела относительно оси.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим

Выражение основного закона динамики вращательного движения через изменение момента импульса тела.

Рассмотрим произвольную систему тел. Моментом импульса системы назовем величину L, равную векторной сумме моментов импульсов отдельных ее частей Li, взятых относительно одной и той же точки выбранной системы отсчета.

Найдем скорость изменения момента импульса системы. Проведя рассуждения, аналогичные описанию вращательного движения твердого тела, получим, что

скорость изменения момента импульса системы равна векторной сумме моментов внешних сил M, действующих на части этой системы.

Причем вектора L и M задаются относительно одной и той же точки O в выбранной СО. Уравнение (21) представляет собой закон изменения момента импульса системы.

Причиной изменения момента импульса является действующий на систему результирующий момент внешних сил. Изменение момента импульса за конечный промежуток времени можно найти, воспользовавшись выражением

Закон сохранения момента импульса. Примеры.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) :
.

Очень нагляден закон сохранения момента импульса в опытах с уравновешенным гироскопом – быстро вращающимся телом, имеющим три степени свободы (рис. 6.9).

Именно закон сохранения момента импульса используется танцорами на льду для изменения скорости вращения. Или еще известный пример – скамья Жуковского (рис. 6.11).

Работа силы.

Работа силы - мера действия силы при превращении механического движения в другую форму движения.

Примеры формул работы сил.

Работа силы тяжести; работа силы тяжести наклонной пов-ти

Работа силы упругости

Работа силы трения

Консервативные и неконсервативные силы.

Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек.

К классу консервативных относятся, например, гравитационные силы, упругие, силы электростатического взаимодействия.

Существуют силы, работа которых зависит от формы пути, т. е. работа по замкнутой траектории не равна нулю (например силы трения). Такие силы называют неконсервативными .
В этом случае работа не идёт на увеличение потенциальной энергии (dA dEn), а идёт на нагревание тел, т. е. на увеличение кинетической энергии молекул тела.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-03-31

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

В инерциальной системе отсчёта угловое ускорение , приобретаемое телом, вращающимся относительно неподвижной оси, пропорционально суммарному моменту всех внешних сил , действующих на тело, и обратно пропорционально моменту инерции тела относительно данной оси:

Можно дать и более простую формулировку основному закону динамики вращательного движения (его ещё называют вторым законом Ньютона для вращательного движения ) : вращающий момент равен произведению момента инерции на угловое ускорение :

Моментом импульса (моментом количества движения , угловым моментом ) тела называется произведение его момента инерции на угловую скорость :

Момент импульса – векторная величина. Его направление совпадает с направлением вектора угловой скорости.

Изменение момента импульса определяется следующим образом:

. (I.112)

Изменение момента импульса (при неизменном моменте инерции тела) может произойти, только вследствие изменения угловой скорости и всегда обусловлено действием момента силы .

Согласно формуле , а также формулам (I.110) и (I.112) изменение момента импульса можно представить в виде:

. (I.113)

Произведение в формуле (I.113) называется импульсом момента силы или движущим моментом . Он равен изменению момента импульса.

Формула (I.113) справедлива при условии, что момент силы не меняется с течением времени . Если же момент силы зависит от времени, т.е. , то

. (I.114)

Формула (I.114) показывает, что: изменение момента импульса равно интегралу по времени от момента силы . Кроме того, если эту формулу представить в виде: , то из неё будет следовать определение момента силы : мгновенный момент силы представляет собой первую производную момента импульса по времени ,

Выражение (I.115) является ещё одной формой основного уравнения (закона ) динамики вращательного движения твёрдого тела относительно неподвижной оси: производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси .

Вопрос 15

Момент инерции



Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

J=

Суммирование производится по всем элементарным массам m(i), на которые разбивается тело

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина г в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси. Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом г и внешним г + dr. Момент инерции каждого полого цилиндра d,/ = r^2 dm (так как dr≤r то считаем, что расстояние всех точек цилиндра от оси равно г), где dm - масса всего элементарного цилиндра; его объем 2πr hrdr . Если р - плотность материала, то dm = 2πhpr^3dr . Тогда момент инерции сплошного цилиндра

но так как πR^3h - объем цилиндра, то его масса m= πR^2hp , а момент инерции

Теорема Штейнера

Момент инерции тела J относительно произвольной оси равен моменту его инерции относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

J= + ma^2

1. Момент инерции однородного прямого тонкого цилиндрического стержня длины и массы относительно оси проходящей через его середину и перпендикулярной к его длине:

2. Момент инерции однородного сплошного цилиндра (или диска ) радиуса и массы относительно оси симметрии перпендикулярной к его плоскости и проходящей через его центр:

3. Момент инерции цилиндра радиуса , массы и высоты относительно оси, перпендикулярной к его высоте и проходящей через её середину:

4. Момент инерции шара (тонкостенной сферы ) радиуса и массы относительно его диаметра (или оси проходящей через центр сферы):

5. Момент инерции стержня длины и массы , относительно оси проходящей через один из его концов и перпендикулярной к его длине:

6. Момент инерции полого тонкостенного цилиндра радиуса и массы , относительно оси цилиндра:

7. Момент инерции цилиндра с отверстием (колесо, муфта):

,

где и - радиусы цилиндра и отверстия в нём. Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Гироскоп (пример:юла) – симметричное тело, вращающиеся вокруг своей оси с большой скоростью.

Момент количества движения гироскопа совпадает с его осью вращения.

Электрический заряд – это мера участия тел в электромагнитных взаимодействиях.

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Закон Кулона:

.

Электрическое поле – это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами.

Напряженность электрического поля – векторная физическая величина. Направление вектора напряжённости совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов:

Динамика вращательного движения

Основания и фундаменты рассчитывают по 2 предельным состояниям

По несущей способности: N – заданная расчетная нагрузка на основание в наиболее невыгодной комбинации; - несущая способность (предельная нагрузка) основания для данного направления нагрузки N ; - коэффициент условий работы основания (<1); - коэффициент надежности (>1).
По предельным деформациям: - расчетная абсолютная осадка фундамента; - расчетная относительная разность осадок фундаментов; , - предельные величины, соответственно абсолютной и относительной разности осадок фундаментов (СНиП 2.02.01-83*)

Динамика вращательного движения

Предисловие

Обращаю внимание студентов на то, что ЭТОТ материал в школе не рассматривался АБСОЛЮТНО (кроме понятия момента силы).

1. Закон динамики вращательного движения

a. Закон динамики вращательного движения

b. Момент силы

c. Момент пары сил

d. Момент инерции

2. Моменты инерции некоторых тел:

a. Кольцо (тонкостенный цилиндр)

b. Толстостенный цилиндр

c. Сплошной цилиндр

e. Тонкий стержень

3. Теорема Штейнера

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса

5. Работа при вращательном движении

6. Кинетическая энергия вращения

7. Сопоставление величин и законов для поступательного и вращательного движения

1a. Рассмотрим твердое тело, которое может вращаться вокруг неподвижной оси ОО (рис.3.1). Разобьем это твердое тело на отдельные элементарные массы Δm i . Равнодействующую всех сил, приложенных к Δm i , обозначим через . Достаточно рассмотреть случай, когда сила лежит в плоскости, перпендикулярной оси вращения: составляющие сил, параллельные оси, не могут влиять на вращение тела, так как ось закреплена. Тогда уравнение второго закона Ньютона для касательных составляющих силы и ускорения запишется в виде:

. (3.1)

Нормальная составляющая силы обеспечивает центростремительное ускорение и на угловое ускорение не влияет. Из (1.27): ,где – радиус вращения i -той точки. Тогда

. (3.2)

Умножим обе части (3.2) на :

Заметим, что

где α – угол между вектором силы и радиус-вектором точки (рис.3.1), – перпендикуляр, опущенный на линию действия силы из центра вращения (плечо силы). Введём понятие момента силы .

1b. Моментом силы относительно оси называется вектор, направленный по оси вращения и связанный с направлением силы правилом буравчика, модуль которого равен произведению силы на ее плечо: . Плечо силы l относительно оси вращения – это кратчайшее расстояние от линии действия силы до оси вращения. Размерность момента силы:

В векторной форме момент силы относительно точки:

Вектор момента силы перпендикулярен и силе, и радиус-вектору точки её приложения:

Если вектор силы перпендикулярен оси, то вектор момента силы направлен по оси по правилу правого винта, а величина момента силы относительно этой оси (проекция на ось) определяется формулой (3.4):

Момент силы зависит и от величины силы, и от плеча силы. Если сила параллельна оси, то .

1c. Пара сил – это две равные по величине и противоположные по направлению силы, линии действия которых не совпадают (рис.3.2). Плечо пары сил – это расстояние между линиями действия сил. Найдём суммарный момент пары сил и () в проекции на ось, проходящую через точку О:

То есть момент пары сил равен произведению величины силы на плкчо пары:

. (3.6)

Вернёмся к (3.3). С учётом (3.4) и (3.6):

. (3.7)

1d. Определение: скалярная величина , равная произведению массы материальной точки на квадрат ее расстояния до оси, называется моментом инерции материальной точки относительно оси ОО:

Размерность момента инерции

Векторы и совпадают по направлению с осью вращения, связаны с направлением вращения по правилу буравчика, поэтому равенство (3.9) можно переписать в векторной форме:

. (3.10)

Просуммируем (3.10) по всем элементарным массам, на которые разбито тело:

. (3.11)

Здесь учтено, что угловое ускорение всех точек твердого тела одинаково, и его можно вынести за знак суммы. В левой части равенства стоит сумма моментов всех сил (и внешних, и внутренних), приложенных к каждой точке тела. Но по третьему закону Ньютона, силы, с которыми точки тела взаимодействуют друг с другом (внутренние силы), равны по величине и противоположны по направлению и лежат на одной прямой, поэтому их моменты компенсируют друг друга. Таким образом, в левой части (3.11) остается суммарный момент только внешних сил: .

Сумма произведений элементарных масс на квадрат их расстояний от оси вращения называется моментом инерции твердого тела относительно данной оси:

. (3.12)

Таким образом, ; – это и есть основной закон динамики вращательного движения твёрдого тела (аналог второго закона Ньютона ): угловое ускорение тела прямо пропорционально суммарному моменту внешних сил и обратно пропорционально моменту инерции тела :

. (3.13)

Момент инерции I твердого тела является мерой инертных свойств твердого тела при вращательном движении и аналогичен массе тела во втором законе Ньютона. Он существенно зависит не только от массы тела, но и от ее распределения относительно оси вращения (в направлении, перпендикулярном оси).

В случае непрерывного распределения массы сумма в (3.12) сводится к интегралу по всему объему тела:

2a. Момент инерции тонкого кольца относительно оси, проходящей через его центр перпендикулярно плоскости кольца.

,

поскольку для любого элемента кольца его расстояние до оси одинаково и равно радиусу кольца: .

2b. Толстостенный цилиндр (диск) с внутренним радиусом и внешним радиусом .

Вычислим момент инерции однородного диска плотностью ρ , высотой h, внутренним радиусом и внешним радиусом (рис.3.3) относительно оси, проходящей через центр масс перпендикулярно плоскости диска. Разобьем диск на тонкие кольца толщиной и высотой так, что внутренний радиус кольца равен , внешний – . Объем такого кольца , где – площадь основания тонкого кольца. Его масса:

Подставим в (3.14) и проинтегрируем по r ():



Масса диска , тогда окончательно:

. (3.17)

2c. Сплошной цилиндр (диск).

В частном случае сплошного диска или цилиндра радиусом R подставим в (3.17) R 1 =0, R 2 =R и получим:

. (3.18)

Момент инерции шара радиуса R и массой относительно оси, проходящей через его центр (рис.3.4), равен (без доказательства):


2e. Момент инерции тонкого стержня массой и длиной относительно оси, проходящей через его конец перпендикулярно стержню (рис.3.5).

Стержень разобьём на бесконечно малые участки длиной . Масса такого участка . Подставим в (3.14) и проинтегрируем от 0 до :

Если ось проходит через центр стержня перпендикулярно ему, можно рассчитать момент инерции половины стержня по (3.20) и затем удвоить:

. (3.21)

3. Если ось вращения не проходит через центр масс тела (рис.3.6), вычисления по формуле (3.14) могут быть довольно сложными. В этом случае расчет момента инерции облегчается применением теоремы Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции I c тела относительно оси, проходящей через центр масс тела параллельно данной оси, и произведения массы тела на квадрат расстояния между осями:

. (3.22)

Посмотрим, как работает теорема Штейнера, если применить её к стержню:

Нетрудно убедиться, что получилось тождество, поскольку в этом случае расстояние между осями равно половине длины стержня .

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса.

Из закона динамики вращательного движения и определения углового ускорения следует:

.

Если , то . Введём момент импульса твёрдого тела как

Соотношение (3.24) – это основной закон динамики твёрдого тела для вращательного движения. Его можно переписать так:

и тогда это будет аналог второго закона Ньютона для поступательного движения в импульсной форме (2.5)

Выражение (3.24) можно проинтегрировать:

и сформулировать закон изменения момента импульса: изменение момента импульса тела равно импульсу суммарного момента внешних сил . Величина называется импульсом момента силы и аналогична импульсу силы в формулировке второго закона Ньютона для поступательного движения (2.2) ; момент импульса является аналогом импульса .

Размерность момента импульса

Момент импульса твёрдого тела относительно его оси вращения – это вектор, направленный по оси вращения по правилу буравчика.

Момент импульса материальной точки относительно точки О (рис.3.6) – это:

где – радиус-вектор материальной точки, – её импульс. Вектор момента импульса направлен по правилу буравчика перпендикулярно плоскости, в которой лежат векторы и : на рис.3.7 – к нам из-за рисунка. Величина момента импульса

Твёрдое тело, вращающееся относительно оси, разобьём на элементарные массы и просуммируем по всему телу моменты импульса каждой массы (то же самое можно записать в виде интеграла; это непринципиально):

.

Поскольку угловая скорость всех точек одинакова и направлена по оси вращения, то можно записать в векторной форме:

Таким образом, доказана эквивалентность определений (3.23) и (3.26).

Если суммарный момент внешних сил равен нулю, то момент импульса системы не изменяется (см.3.25):

. Это закон сохранения момента импульса . Это возможно, когда:

а) система замкнута (или );

б) у внешних сил нет касательных составляющих (вектор силы проходит через ось/центр вращения);

в) внешние силы параллельны закреплённой оси вращения.

Примеры использования/действия закона сохранения момента импульса:

1. гироскоп;

2. скамья Жуковского;

3. фигуристка на льду.

5. Работа при вращательном движении.

Пусть тело повернулось на угол под действием силы и угол между перемещением и силой равен ; – радиус-вектор точки приложения силы (рис.3.8), тогда работа силы равна.