Рождение и смерть. Галактические сверхволны или взрывы в ядре нашей галактики Галактический взрыв

История этой неординарной галактики началась в 1774 г., когда немецкий астроном и математик Иоганн Элерт Воде сделал в своем дневнике первую дошедшую до нас запись о ней: "наблюдал пятно удлиненной формы и туманных очертаний". В августе 1779 г. галактику независимо обнаруживает француз Пьер Мешен и сообщает о ней Шарлю Мессье, который вскоре включает ее в свой знаменитый каталог под 82-м номером. Именно под этим номером она и известна сейчас всем астрономам.

М82 оставалась ничем не примечательным объектом вплоть до 1871 г., пока ирландский астроном Вильям Парсонс не взглянул на нее в свой 182-см рефлектор, в то время крупнейший в мире. Галактика сразу привлекла его внимание необычной структурой из темных пылевых полос и пятен, пересекающих ее удлиненное тело.

В 1963 г. американские астрономы Линде и Сендидж решили выяснить, почему оранжевокрасный цвет этой неправильной галактики совершенно не соответствует ее раннему спектру (А2). Обычно, когда цвет звезды или галактики краснее, чем должен быть, исходя из их спектра, подозрение сразу падает на присутствие диффузной материи. Оказалось, что в М82 ее предостаточно - на снимках в линии водорода (Н α) действительно проявились огромные газообразные волокна, простирающиеся с обеих сторон от лимба галактики на 10000 св. лет (еще лучше эти волокна видны на представленной здесь фотографии, которая была получена в феврале этого года с помощью 8.3-м телескопа "Субару"). Дополнительные измерения показали, что газ вылетает из галактики со скоростью около 1000 км/с (!), что заставило астрономов сделать поразительный вывод: М82 "взрывается"!

Что же явилось причиной взрыва? Сендидж выдвинул гипотезу, что активность М82 обязана неизвестным пока процессам, протекающим в ее ядре. Таким образом, от старой идеи Вальтера Бааде и Рудольфа Мин-ковского, предлагавших искать причину активности галактик в их взаимных столкновениях, был сделан шаг в совершенно ином направлении.

Дальнейшие исследования показали, что М82 является рекордсменом среди галактик в инфракрасном диапазоне - явный показатель процесса бурного звездообразования. Но откуда берется необходимая для этого материя? Вначале астрономы предположили, что М82 "вплыла" в гигантское пылевое облако, вещество которого, попадая в центральные области галактики, как раз и питает столь интенсивное рождение звезд. Однако сделанное в 1977 г. открытие заставило астрономов обернуть свои головы на галактику М81, расположенную всего в 37" от М82. Между этими системами был обнаружен настоящий мост, состоящий из нейтрального водорода, а значит, эти галактики были когда-то намного ближе друг к другу, чем сегодня. Выходит, снова назад, к столкновительной гипотезе Бааде и Минковского?

Крупной вехой в этой истории стал 1980 г., когда Джордж Райк показал, что наблюдаемую картину могут полностью объяснить "обычные" звездные процессы -рождение и смерть звезд. Тогда же был введен термин "взрывное звездообразование", описывающий тот уголок космоса, в котором чрезвычайно быстро и эффективно формируются новые звезды на протяжении короткого интервала времени в несколько десятков или сотен миллионов лет.

Следующим важным успехом было получение в 1985 г. подробного изображения галактики, позволившего разрешить ее ядро на крошечные точечные источники. Они, по-видимому, являлись останками сверхновых, которые должны быть естественными спутниками процесса взрывного звездообразования. Ведь в общей массе рождающихся звезд известная доля должна приходиться и на массивные светила, которые довольно быстро заканчивают свою жизнь колоссальным взрывом. Источник энергии был налицо!

С выходом на орбиту рентгеновского телескопа "Чандра" появилась возможность рассмотреть наиболее яркие останки сверхновых и двойных рентгеновских звезд. Некоторые из пятен, видимых на этом снимке, вероятно, являются самыми яркими из известных на сегодня рентгеновских двойных звезд, а диффузное свечение газа вызвано его разогревом до температуры в несколько миллионов градусов - для области столь интенсивного звездообразования это норма.

Итак, оказалось, что разлетающийся из галактики такими причудливыми нитями газ вполне может черпать энергию в процессе бурного звездообразования, сопровождающегося мощными вспышками сверхновых. И хотя сегодня почти все соглашаются, что именно эти вспышки подпитывают активность М82, думается, что в истории изучения этой галактики будет еще очень много неожиданных поворотов.

ГАЛАКТИЧЕСКИЕ СВЕРХВОЛНЫ или взрывы в ядре нашей Галактики

В первой половине XX столетия ученые даже не догадывались, что взрывы в ядре нашей Галактики могут представлять опасность для Земли. Доклады о чрезвычайно сильных взрывах, происходящих в ядрах некоторых галактик, стали появляться только в конце 50-х - начале 60-х годов. Вскоре астрономы заговорили о том, что подобная бурная активность является, пожалуй, относительно распространенным явлением, периодически повторяющимся в ядрах всех галактик, в том числе и нашей.

Однако их нисколько не волновало то, что центр Млечного Пути способен периодически взрываться, ведь, как они полагали, выброшенные частицы космических лучей не долетят до Земли. По их мнению, межзвездные магнитные поля в ядре Галактики послужат своего рода страховочной сеткой, которая не позволяет электрически заряженным космическим частицам удалиться более чем на несколько сотен световых лет. Ученые, например, считали, что линии магнитного поля Млечного Пути расположены перпендикулярно направлению космических лучей. При таком расположении эти поля создавали бы силы, способные изменить направление частиц и заставить их вращаться в крутых спиралях, таким образом захватив и задержав их. В одном исследовании, опубликованном в 1964 году, предсказывалось, что задержка космических частиц будет столь длительной, что пройдут миллионы лет, прежде чем они распространятся по Солнечной системе. К тому времени взрывная энергия настолько ослабнет, что повышение уровня фонового излучения в районе Земли составит всего несколько процентов. Как мы вскоре убедимся, данная теория неверна, поскольку линии магнитного поля Галактики расположены преимущественно параллельно внешним траекториям названных частиц, а не поперек.

Астрономы, кроме того, сильно переоценили длительность интервалов между взрывами, полагая, что они происходят не чаще одного раза в 10-100 миллионов лет. Столь завышенные оценки явились следствием неверных представлений о двухлепестковых радиогалактиках. Это галактики с ядрами, активно излучающими космические лучи, по бокам которых находятся два крупных района, так называемые радиолепестки, где летящие наружу космические лучи испускают огромное количество радиоволн. Хотя эти лепестки занимают площадь в миллионы световых лет, их излучение можно легко объяснить взрывом ядра галактики, процессом, длящимся от 1000 до 10 000 лет. Однако радиоастрономы сделали неправильный вывод, будто эти частицы космических лучей порождены в результате взрывов ядра, процесса, длящеюся миллионы лет и сменяющегося спокойной фазой продолжительностью до 100 миллионов лет. Видя, что ядро нашей Галактики в настоящее время довольно неактивно, они решили, что данная спокойная фаза тоже продлится многие десятки миллионов лет. Хотя данные, свидетельствовавшие об обратном (о том, что сравнительно сильные взрывы произошли в центре Млечного Пути в последние 10000-100 000 лет1-2), начали поступать уже в 1977 году, астрономы почему-то полагали, что те взрывы были незначительными и случайными, произошедшими в тот период, когда ядро, в общем-то, находилось в спокойном состоянии.

Зодиакальное послание рисует совершенно иную картину. Из него явствует, что взрывы ядра нашей Галактики способны сильно воздействовать на Землю и серьезно изменить жизнь ее обитателей и что, в частности, один такой взрыв повлиял на нашу планету перед концом последнего ледникового периода. Если сказанное выше верно, тогда взрывы в ядрах галактик случаются гораздо чаще, нежели полагают современные астрономы. В связи с этим нам не остается ничего другого, как предложить новую гипотезу о взрывах ядер галактик. Вот ее краткое изложение:

1.Ядро нашей Галактики периодически вступает во взрывную фазу, во время которой оно порождает интенсивный поток частиц космических лучей (электронов, позитронов и протонов). При этом выбрасывается столько энергии, сколько при очень мощных вспышках пяти - десяти миллионов сверхновых.

2.Эти взрывы повторяются примерно каждые 10 000 лет и продолжаются от нескольких сотен до нескольких тысяч лет.

3.Космические частицы (электроны и протоны), результат взрыва ядра, разлетаются радиально от галактического ядра с околосветовой скоростью и проходят через галактический диск с минимальным затуханием. Однако один из компонентов космических частиц, протон, все же улавливается магнитными полями. Будучи в 2000 раз тяжелей электронов, протоны летят значительно медленней и отстают от фронта электронов космических лучей, После этого они рассеиваются, их скорость быстро снижается, и магнитные поля в галактическом ядре захватывают их.

4. Один такой поток космических лучей пронесся через Солнечную систему перед концом последней ледниковой эпохи, внося в нес на протяжении нескольких тысяч лет огромные количества космической пыли. Эта пыль, воздействуя на Солнце и поглощая при прохождении через космос солнечный свет, в свою очередь, существенно изменила земной климат.

В соответствии с данной гипотезой электрически заряженные частицы сверхволны, электроны, беспрепятственно разлетаются от ядра галактики, следуя вдоль линий полей, находящихся на одном уровне с радиальным направлением их траектории. Летя вдоль них, частицы проявляют силы, которые выравнивают линии полей, как расческа пряди волос. Благодаря этому поля сохраняют радиальное направление по отношению к галактическому центру, и поэтому летящие частицы встречают минимальное сопротивление. Выбросы сверхволн из центра галактики явление довольно частое, и поэтому сгребенные поля не успевают сильно отклониться от радиального направления. Хотя линии межзвездных магнитных полей тоже проходят поперек, они не мешают распространению частиц сверхволны, так как компонент радиального магнитного поля проходит через и вокруг них.

Двигаясь через галактику по радиальным магнитным траекториям, электроны сверхволны толкались бы вперед и назад, испуская направленный вперед конический луч синхротронного элегсгромагнитного излучения. Данный эффект направленного вперед луча возникает потому, что электроны двигаются почти с той же скоростью, с какой и испускаемое ими излучение. Последнее облегчает прохождение сверхволны, так как разогревает межзвездную среду перед двигающимися космическими лучами, а это, в свою очередь, подавляет рост гидромагнитных волн, так называемых плазменных волн, которые в противном случае могли бы замедлить их движение.

Способность разогретого газа облегчать прохождение космических частиц была продемонстрирована в середине 80-х годов XX столетия при испытании, в рамках программы «Звездные войны», пучкового оружия. Ученым никак не удавалось заставить выпущенный пучок частиц двигаться по прямой линии к цели. Они нашли следующее решение: за долю секунды до момента выброса пучка частиц они включали лазер большой мощности. Лазерный луч пробивал туннель из горячего ионизованного газа, через который пучок частиц мог беспрепятственно пройти. К удивлению ученых, выяснилось, что начавший движение пучок устремлен так же прямо, как стрела. Стоило только потоку частиц начать движение по прямой траектории, и его прямо направленное синхротронное излучение действовало подобно «лазеру», ионизировавшему перед собой газ.

В 1985 году были получены новые данные, свидетельствовавшие о том, что космические лучи способны преодолевать огромные расстояния, и при этом им не мешают ни галактические магнитные поля, ни взаимодействия с плазменными волнами. Группа исследователей в области физики высоких энергий обнаружили, что Лебедь Х-3, пульсирующий источник космических лучей, расположенный на расстоянии 25-30 тысяч световых лет, бомбардирует Землю потоками космических частиц высоких энергий5. Они установили, что, несмотря на магнитные поля, упомянутые частицы, двигаясь с околосветовой скоростью по прямой траектории, способны достичь Земли. Через несколько лет другая группа ученых нашла еще один такой источник, пульсар Геркулес Х-1 в рентгеновском диапазоне, в настоящее время бомбардирующий Землю потоками выброшенных частиц каждую 1,2357 секунды. Несмотря на то что указанная звезда расположена на расстоянии 12 000 световых лет, воздействие межзвездной среды настолько незначительно, что интервал между последовательными выбросами частиц не превышает 300 миллионных секунды! Если бы межзвездная среда значительно замедлила движение этих частиц, их импульсы потекли бы почти непрерывным потоком. Следовательно, эти данные подтверждают содержащееся в знаках зодиака предсказание о том, что космические лучи из центра галактики могут лететь к Земле с околосветовой скоростью.

Скорости движения во Вселенной . Определение: То к – течение синфазное движение всех частей движущегося объема среды. Волна обусловлена противофазным последовательным движением (эндотечением ) соседних составляющих среду объемов (за счет упругости среды) движущегося (или покоящегося) объема. Отсюда следует, что ток всегда медленнее волны в этой среде. В теоретическом пределе, то есть для микрообъемов и коротких волн («эндотечение», смотри выше), скорость тока может приближаться к скорости волны.

Соответственно эфирный ток v э, в том числе и гравитационная фильтрация (смотри Тяготение - не притяение ), всегда медленнее волнового движения эфира, скорость которого v э.в. является максимально возможной скоростью во Вселенной. Максимальной волновой скоростью во Вселенной является скорость света v с (Тайны скорости света смотри).

Скорость тока эфира может быть также велика. Так метеор, перемещаемый к Земле током эфира, летит со скоростью в несколько десятков километров в секунду. Если бы около Земли v э была мала, то метеор, имея v = v э в Космосе, далее (чем ближе к Земле) все более тормозился бы эфиром и плавно сел. (Да и человек, споткнувшись, не падал бы так стремительно).

Рост давления в галактике и звезде . При образовании вихрей из эфирного тока (течения) из непрерывности эфира (Пространство непрерывно смотри) вытекает, что скорость тока растёт к центральной области вихря и тем больше, чем больше растёт кривизна вихря. Из Замыкание Вселенной следует, что самая бо́льшая скорость в вихре − галактике (звезде) будет в его центральной части. Из "Замыкание Вселенной" следует также, что в центральной части вращающейся галактики (звезды) фильтрация отсутствует. Следовательно, сжата центральная зона не наружным фильтрационным давлением (Тяготением, как считается), а собственным внутренним упругим давлением за счет подклин ивания наматывающихся струй (смотри рисунок в "Замыкание Вселенной") макровихря вращением с максимальной скоростью эфира в галактике . Аналогично и в звезде. Соответственно для звезды в галактике через ядро звезды к ядру галактики также фильтрации не будет, но будет втекание эфира в ядро звезды и её гравитационное движение за счёт обтекания торообразного ядра звезды (смотри Звёзды и галактики ) потоком вязкого эфира, движущегося к ядру галактики.*

Из подклин ивания (смотри рисунок в "Замыкание Вселенной" ) каждого наматывающегося упругого слоя эфира следует, что давление внутри центральной зоны растет путем суммирования давления каждого слоя. Здесь частота вибрации эфира (смотри Свойства космического эфира ) увеличивается – увеличивается (смотри Давление ) внутреннее давление**(рис. 5).

Рис. 5. Эпюра распределения давления по глубине ядра галактики (звезды):

R – радиус ядра; V– направление течения эфира; Р – ордината эпюры.

С начала фазы наматывания эфира слоями в центральной области вихря -- ядре прежнее потенциальное движение выравнивания плотности эфира ρ i изменяется на новое движение – накапливание эфира с увеличенной во много крат плотностью ρ ядр. , по сравнению с ρ тм тех мест с увеличенной плотнстью, откуда эфир потёк в место будущей галактики (звезды). Подтверждением того, что эфир здесь уплотняется больше , чем была плотность тех мест, откуда эфир потек, является его последующее разуплотнение, то есть колебания , которые являются фундаментальным свойством Вселенной (смотри Колебательность движений ). Иначе этих колебаний не возникнет.

Таким образом, внутри ядра накапливается эфир, находящийся в сжатом (напряженном) состоянии. Изнутри наружу в нём действует суммарное давление слоёв вибрирующего упругого эфира. Снаружи внутрь этому давлению противодействует устойчивость вихревого движения ("Звёзды и галактики" смотри ) – упругость орбит.

Механизм возникновения взрыва. При втекании в вихрь эфира, движение эфира к ядру вихря по мере выравнивания ρ в околовихревой области замедляется . При идеальном отсутствии тел, например, в галактике - звёзд, в звёздной системе - планет, происходит плавное замедление вращения. Меж струйная вязкость здесь не проявляется, так как эфир активен в течении (смотри Виды галактик ). Затем это движение останавливается. И далее так как плотность эфира в наружном пульсирующем слое ядра больше, чем плотность периферической зоны эфира за пределами ядра, то начинается фаза выравнивания плотностей эфира этих зон: эфир начинает плавно разматываться с ядра. В этих условиях эфир путем нового колебания приходит к своему основному состоянию – материнскому эфиру без образования тел.

Реально происходит иначе. Эфирный вихрь в центральной его части наматывается на себя, а значит, становится больше в диаметре и растет до тех пор, когда давление изнутри достигнет значений внешнего давления (смотри выше абзац: «Таким образом...»). После чего вихрь частично или полностью разрушается взрывом. При частичном разрушении сбрасывается внешняя часть вихря - оболочка ядра или части этой оболочки. При этом таких частей чаще всего будет множество по поверхности звезды. Причиной этого является неодинаковость звезды по её поверхности, смотри Свойства Пространства. Наличие множества таких местных взрывов исключает их катастрофичность для окружающего Пространства. Поверхность звезды своими разными участками будет как бы дышать за счёт местных сбросов давления. При полном разрушении - разрушается весь вихрь. Особенно мощный взрыв будет при возникновении быстрого торможения вращения макровихря *** . Это будет за счет примыкания к центральной части галактики (звезды) большого тела или скопления тел. Это быстрое торможение вызовет быстрое исчезновение вихревого подклинивания, удерживающего центральную часть макровихря в сжатом состоянии (смотри выше) – сжатие реализуется во взрыв галактики (звезды).

Перед взрывом материя текла в одно рассматриваемое место – ядро галактики (звезды). После взрыва распределение плотности ρ эфира стало совсем иным . В частности эфир теперь может течь ко многим центрам (звёздам, планетам, телам). В этом случае из одного большого вихря образуется много мелких . Эти мелкие упорядочиваются вокруг существенно большего и возникает новая галактика (звезда).

Может быть и иная ситуация. Взрыв разбрасывает в эфирном Пространстве периферийную зону и части центрального ядра галактики (звезды) во все стороны (с их прямым и обратным вращением). В месте бывшего ядра за счет Инерции частей ядра (смотри Сущность Инерции ) образуется зона разрежения эфира (ρ мало). Тогда последует выравнивание ρ н н аружной зоны с ρ в в нутренней – опять поток эфира в место разрежения – образование новой галактики (звезды) в близком к прежнему месте.

Следствие. Те галактики, которые не спиральны, не эллиптичны и не шаровые, находятся в фазе разлетания во взрыве (негравитационной фазе, смотри выше "Тяготение - не притяжение) или в начале следующей за ней (смотри два предыдущих абзаца) фазы образования новой галактики.

* Из изложенного видно, что одно крайнее (в колебании) состояние эфира – чистый эфир (материнский), второе – сжатый в ядре звезды (галактики) самоуплотненный вихрь. Отсюда следует, что все известные частицы (тела) представляют собой свободные и сцепленные микровихри и образовались они снаружи ядра в фазе уплотнения эфира. При обратном колебании эфира (смотри выше "Свойства космического эфира" ) они будут разбросаны по чистому эфиру с вращением в прямую и обратную основному вращению стороны.

** Вибрация эфира остается, а колебания частиц , движущихся в основном потоке эфира, исчезают, так как сами частицы исчезают (смотри Меньший вихрь гасится )

*** Аналогией является разрыв точильного наждака в результате его заклинивания обтачиваемым предметом, например, неумело зачищаемой для вулканизации автомобильной камерой.

Рождение и смерть.

Наша Галактика выросла за миллиарды лет из скопления более мелких галактик, сталкивавшихся и сливавшихся друг с другом. Эти молодые галактики долго кружились в «танце смерти», постоянно сближаясь под действием сил гравитации. Этот сценарий работает для всех галактик во Вселенной.

Когда одна галактика приближается к другой на достаточное расстояние, они начинают чувствовать взаимные силы тяготения. Галактика с более массивной Чёрной дырой в центре притягивает и поглощает меньшие галактики, превращая хаотичный танец в настоящий «водоворот». Чёрная дыра — «воронка» в центре этого «водоворота» — ещё больше увеличивается, сожрав Чёрную дыру поглощённой галактики меньшего размера.

Обнаружив, наконец, Центр нашей галактики Млечный Путь и начав отслеживать радиосигналы, посылаемые из него, астрономы увидели признаки надвигающейся катастрофы.

Сразу за центральной дырой Млечного Пути разрастается огромное кольцо газа. Со временем оно накопит энергию, равную энергии 300 миллионов солнц. Когда это кольцо достигнет пика своего развития, оно начнёт выделять второе кольцо, которое будет вращаться ближе к Центру. Внутреннее кольцо сконденсируется в гигантское облако, из которого появятся новые звёзды. Затем облако газа начнёт закручиваться по спирали в объятия Чёрной дыры. Когда это «пиршество» начнётся, выброс энергии будет виден далеко за пределами нашей Галактики. Наша невидимая Чёрная дыра превратится в яростный Квазар с джетами протяжённостью на десятки тысяч световых лет.

Если наша Галактика сможет пережить «пиршество» своей Чёрной дыры, то она вряд ли сможет пережить угрозу, ожидающую её впоследствии: угрозу ГАЛАКТИЧЕСКОГО КАННИБАЛИЗМА. У нас есть соседи, и мы движемся навстречу друг другу.

Конец нашей Галактики надвигается уже сейчас: наш гигантский сосед, Туманность Андромеды, движется в нашем направлении.

Зная измерения галактик, траектории их полёта и законы тяготения, учёные могут предсказать, как будет разворачиваться «битва Титанов».

Сначала Галактики начнут вращаться и переплетаться, разрывая друг друга на части, постепенно теряя свои привычные формы. Звёзды начнут вязнуть и двигаться по пути, только что сформированному новым Центром, и становиться «пищей» этого чудовища. Столкновение отправит в космическое пространство вихрь из звёзд и газа. Некоторые из них полетят к переполненному центру образованной вновь Галактики, порождая ещё более крупные взрывы.

В ходе этой суматохи наша маленькая Солнечная система будет либо запущена в космическую бездну, либо попадёт в гравитационную ловушку Чёрной дыры.

В процессе слияния произойдёт очень крупный взрыв, и все газы устремятся в центр Галактики. Помимо того, что две Чёрные дыры сольются воедино, они также поглотят много газа. Чёрная дыра нашего Млечного Пути спровоцирует выброс такого огромного количества энергии, что весь газ вокруг неё будет унесён сильным космическим ветром. И это будет очень-очень сильная утечка, не сравнимая ни с чем. Это будет катастрофа огромных масштабов. Млечный Путь будет уничтожен.

Наша Чёрная дыра сольётся с Чёрной дырой Туманности Андромеды. Если звёзды галактик могут появляться и исчезать, то сверхтяжёлые Чёрные дыры становятся только ещё больше и массивнее.

Пока наш монстр спокойно отдыхает. Но как долго ждать, когда он снова проснётся?

Млечный путь. Катастрофы не избежать. Смотрите:

Статьи по теме:

В 1963 г. американские астрономы Линде и Сендидж опубликовали результаты исследования галактики NGC 3034. Эта неправильная галактика типа II обладает особенностью - ее цвет не соответствует спект­ру. Спектр у нее А2 - еще более ранний, чем обычно бывает у галактик типа II, а цвет вместо того, чтобы быть белым, или даже голубым, оказался оранжево-крас­новатым.. В подобных случаях, когда цвет звезды или галактики краснее, чем это следует из ее спектра, наибо­лее вероятно, что покраснение вызвано наличием диф­фузной материи. У NGC 3034 контраст между спектром и цветом настолько значителен, что Линде и Сендидж предположили существование в ней очень большого ко­личества газовой и пылевой материи и выполнили спе­циальное исследование. Сендидж получил на 5-метровом телескопе снимки в узкой части спектра около спект­ральной линии, и в желтых лучах, в которых газовые и пылевые массы фотографируются более отчетливо. Исследование снимков показало наличие плотной системы темных ка­налов и светлых волокон диффузной материи, связанных с ядром, свидетельствующих своей формой об энергич­ном движении, простирающихся на расстояние до 3 кпс по обе стороны от ядра в направлении его малой оси.

Спектрограммы показали, что диффузная материя дает эмиссионные линии и, следовательно, какой-то механизм привел газ в возбужденное состояние. Эмиссионные ли­нии обнаруживают расширение. Измерение его показало, что газ движется со скоростью около 1000 км/с прочь от ядра, образуя волокна. Так как волокна обрываются на расстоянии 3 кпс от ядра (газ успел дойти до этого места), то все перечисленные явления позволяют прийти к заключению, что в ядре NGC 3034 около полутора мил­лионов лет назад произошел грандиозный взрыв, вызвав­ший выброс со скоростью около 1000 км/с огромных масс диффузной материи. Энергия, выделившаяся при взрыве, была израсходована, во-первых, на то, чтобы привести в быстрое движение дуффузную материю и, во-вторых, на то, чтобы перевести ее атомы в ионизованное и воз­бужденное состояние. По наблюдаемой интенсивности из­лучения в линии Н а можно оценить плотность выброшен­ной диффузной материи, а следовательно, и ее общую массу, которая оказалась равной 5,6 млн. солнечных масс. Это позволяет при известной скорости оценить об­щую кинетическую энергию движущейся диффузной ма­терии в 2,4 10 48 Дж. NGC 3034 излучает в эмиссионных линиях, в непрерывном спектре оптических лучей и, как показали наблюдения Линдса, в радиоволнах. Если оце­нить общую мощность, всего излучения и предположить, что в течение всех полутора миллионов лет от начала взрыва мощность излучения была постоянной и равной нынешней, то оценка, энергии взрыва, израсходованной на излучение до настоящего момента, равна 9 10 48 Дж.

Итак, по сумме энергий, израсходованных на приве­дение диффузной материи в движение и на излучение этой материи, можно дать оценку общей энергии взрыва в ядре NGC 3034. Эта энергия больше 10 49 Дж, т. е. в миллион раз больше, чем энергия, выделяемая при вспыш­ке сверхновой звезды. Еще несколько лет назад вспышки сверхновых считались самыми грандиозными катастрофа­ми во Вселенной. А теперь мы являемся свидетелями катастрофы - взрыва в ядре галактики, масштаб которой еще в миллион раз больше.

Может ли являться взрыв в NGC 3034 уникальным явлением, не имеющим себе подобных во Вселенной? Ко­нечно, нет. Столь значительное событие не может быть результатом случайности. Это, конечно, закономерное яв­ление. Вопрос заключается лишь в том: происходит ли оно со всеми галактиками на некоторой стадии их эво­люции или, может быть, только с галактиками некоторого типа, отвечающими определецным физическим требова­ниям.

То, что явление взрыва в ядре обнаружено пока толь­ко у одной галактики, должно объясняться, во-первых, скоротечностью этого процесса, а во-вторых, недостаточ­ной исследованностью даже ярких галактик. Взрыв прои­зошел полтора миллиона лет назад. За это время газовые массы проникли на расстояние трех килопарсек. Еще через 10 млн. лет они дойдут до мест, удаленных от ядра на 15-18 кпс, т. е. выйдут за границу галактики. Ско­рость газовых масс, потраченная на преодоление силы тяготения системы, уменьшится, плотность газов после распространения uo ї всему объему галактики станет зна­чительно ниже, вся» запасенная энергия излучения успеет израсходоваться. Через 10 млн. лет наблюдатель уже не обнаружит в NGC 3034 признаков взрыва. Если считать, что:

мир галактик существует около 10 млрд. лет,

в каждой из галактик один раз за все время про­исходит взрыв в области ядра,

взрывы. у разных галактик происходят в разное время и равномерно распределены по всему промежутку времени 10 10 лет,

взрыв наблюдается в течение 10 млн. лет,

то только у одной из тысячи галактик в настоящий мо­мент должен наблюдаться взрыв. Неудивительно поэто­му, что столь важное и интересное явление не удалось обнаружить раньше, чем через 40 лет после того как на­чалось систематическое изучение галактик. Возможно, однако, что взрывы ядер галактик повторяются, тогда число наблюдаемых взрывов должно быть больше.

Важная задача - проверить другие галактики. Не про­исходит ли взрыв в ядрах некоторых из них? Недавно Б. А. Воронцов-Вельяминов указал на галактики NGC 5195 и NGC 3077, которые имеют общие черты с NGC 3034. Они тоже принадлежат к типу II и в них примерно по радиусам, идущим от центра, располагаются темные каналы со светлыми волокнами. Необходимо ис­следовать эти две галактики, хотя у них, в отличие от NGC 3034, не наблюдается радиоизлучение. Возможно, что взрывы в ядрах этих галактик произошли раньше, чем в NGC 3034, радиоизлучение ослабело и не обнару­живается в наши дни, а остальные последствия взрыва еще видимы.

Б. Е. Маркарян привел список неправильных галак­тик, сходных но внешнему виду с NGC 3034. Все они, в отличие от обычных неправильных галактик II, обла­дают оранжево-красноватым цветом, хотя спектральные классы у них сравнительно ранние: А и F0-F3. Эти галактики, как правило, содержат много темной материи и их светимости в 5-10 раз больше светимостей обычных галактик типа II. Есть основание считать, что иссле­дование спектров и специальных фотографий галактик, приведенных в списке, позволит обнаружить в некоторых из них гигантские взрывы, исходящие из ядра.

По мнению Бербиджей, взрывающейся галактикой яв­ляется также VV 144, т. е. галактика, стоящая под номером 144 в каталоге Б. А. Воронцова-Вельяминова,

После обнаружения столь выдающегося явления в яд­ре NGC 3034 можно полагать, что эмиссионные линии, наблюдаемые в ядрах очень большого числа галактик, являются реликтами значительных событий, происходив­ших в прошлом. Отсутствие эмиссионных линий в ядрах может свидетельствовать о том, что или галактики испы­тали взрыв ядра так давно, что успели утерять последние признаки, связанные со взрывом, или же что взрыва не было и некоторые из галактик находятся в предвзрывном состоянии.

Но это - пока только предположения. Одно очевид­но - спокойный процесс образования звезд из рассеянно­го газа путем его сжатия не может объяснить катаклиз­мов масштаба взрыва в NGG 3034.

Согласно В, А. Амбарцумяну ядра - основная актив­ная область в галактиках и место сосредоточения сверх­плотного вещества. Гигантские взрывы перенасыщенного энергией сверхплотного вещества выбрасывают его части из ядра вместе с попутно образующимися звездами и га­зом вдоль спиральных линий, где в результате непрекра­щающегося дробления частей сверхплотного вещества продолжается процесс формирования звезд и выделения диффузной материи.
Приглашаем Вас обсудить данную публикацию на нашем .