Тригонометрические формулы как решать. Тригонометрические уравнения. Основные методы решений. Простейшие тригонометрические уравнения

При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos 2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Ответ: x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin 2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t 2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На этом уроке мы рассмотрим основные тригонометрические функции, их свойства и графики , а также перечислим основные типы тригонометрических уравнений и систем . Кроме этого, укажем общие решения простейших тригонометрических уравнений и их частные случаи .

Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

Теория

Конспект урока

Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

Область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

Периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

Рассмотрим функцию:

1) Область определения ;

2) Область значений ;

3) Функция нечетная ;

Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Теперь рассмотрим функцию:

Основные свойства этой функции:

1) Область определения ;

2) Область значений ;

3) Функция четная Из этого следует симметричность графика функции относительно оси ординат;

4) Функция не является монотонной на всей своей области определения;

Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

Перейдем к функции:

Основные свойства этой функции:

1) Область определения кроме , где . Мы уже указывали в предыдущих уроках, что не существует. Это утверждение можно обобщить, учитывая период тангенса;

2) Область значений , т.е. значения тангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

5) Функция периодична с периодом

Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на вдоль оси абсцисс.

И завершаем рассмотрением функции:

Основные свойства этой функции:

1) Область определения кроме , где . По таблице значений тригонометрических функций мы уже знаем, что не существует. Это утверждение можно обобщить, учитывая период котангенса;

2) Область значений , т.е. значения котангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

5) Функция периодична с периодом

Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения.

Запишем простейшее тригонометрическое уравнение:

Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует.

Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо по очереди все целые числа.

Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

Например, решением уравнения является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

1) Простейшие , например, ;

2) Частные случаи простейших уравнений , например, ;

3) Уравнения со сложным аргументом , например, ;

4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя , например, ;

5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций , например, ;

6) Уравнения, сводящиеся к простейшим с помощью замены , например, ;

7) Однородные уравнения , например, ;

8) Уравнения, которые решаются с использованием свойств функций , например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

А также уравнения, которые решаются с использованием различных методов.

Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

Наиболее часто встречаются системы следующих типов:

1) В которых одно из уравнений степенное , например, ;

2) Системы из простейших тригонометрических уравнений , например, .

На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

Вставка 1. Решение частных случаев простейших тригонометрических уравнений .

Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

имеют более простые решения, чем дают формулы общих решений.

Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Что такое тригонометрические уравнения?

3. Два основных метода решения тригонометрических уравнений.
4. Однородные тригонометрические уравнения.
5. Примеры.

Что такое тригонометрические уравнения?

Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

Повторим вид решения простейших тригонометрических уравнений:

1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

X= ± arccos(a) + 2πk

2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

Для всех формул k- целое число

Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

Пример.

Решить уравнения: а) sin(3x)= √3/2

Решение:

А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

Тогда x= ((-1)^n)×π/9+ πn/3

Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

Ещё примеры тригонометрических уравнений.

Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

Решение:

А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

Ответ: x=5πk, где k – целое число.

Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Ответ: x=2π/9 + πk/3, где k – целое число.

Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

Решение:

Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

Ответ: x= π/16, x= 9π/16

Два основных метода решения.

Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

Решим уравнение:

Решение:
Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

В результате замены получим: t 2 + 2t -1 = 0

Найдем корни квадратного уравнения: t=-1 и t=1/3

Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

Пример решения уравнения

Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

Решение:

Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Введем замену t=cos(x): 2t 2 -3t - 2 = 0

Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

Тогда cos(x)=2 и cos(x)=-1/2.

Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Ответ: x= ±2π/3 + 2πk

Однородные тригонометрические уравнения.

Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

Уравнения вида

однородными тригонометрическими уравнениями второй степени.

Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

Решить уравнение:
Пример: cos 2 (x) + sin(x) cos(x) = 0

Решение:

Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

Тогда нам надо решить два уравнения:

Cos(x)=0 и cos(x)+sin(x)=0

Cos(x)=0 при x= π/2 + πk;

Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Ответ: x= π/2 + πk и x= -π/4+πk

Как решать однородные тригонометрические уравнения второй степени?
Ребята, придерживайтесь этих правил всегда!

1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


Делаем замену переменной t=tg(x) получаем уравнение:

Решить пример №:3

Решить уравнение:
Решение:

Разделим обе части уравнения на косинус квадрат:

Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

Найдем корни квадратного уравнения: t=-3 и t=1

Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Ответ: x=-arctg(3) + πk и x= π/4+ πk

Решить пример №:4

Решить уравнение:

Решение:
Преобразуем наше выражение:


Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

Решить пример №:5

Решить уравнение:

Решение:
Преобразуем наше выражение:


Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

Задачи для самостоятельного решения.

1) Решить уравнение

А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Тригонометрические уравнения.

Простейшие тригонометрические уравнения.

Методы решения тригонометрических уравнений.

Тригонометрические уравнения. Уравнение, содержащее неизвестное под знаком тригонометрической функции, называется тригонометрическим .

Простейшие тригонометрические уравнения.



Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида (см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

1. Алгебраический метод. Этот метод нам хорошо известен из алгебры

(метод замены переменной и подстановки).

2. Разложение на множители. Этот метод рассмотрим на примерах.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е. Перенесём все члены уравнения влево:

Sin x + cos x – 1 = 0 ,

Преобразуем и разложим на множители выражение в

Левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е. cos 2 x + sin x · cos x sin 2 x – cos 2 x = 0 ,

Sin x · cos x – sin 2 x = 0 ,

Sin x · (cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е. cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

Cos 4x · (cos 2x – cos 4x ) = 0 ,

Cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3.

Приведение к однородному уравнению. Уравнение называется однородным от носительно sin и cos , если все его члены одной и той же степени относительно sin и cos одного и того же угла . Чтобы решить однородное уравнение, надо:

а ) перенести все его члены в левую часть;

б ) вынести все общие множители за скобки;

в ) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos (или sin ) в старшей степени;

д ) решить полученное алгебраическое уравнение относительно tan .

П р и м е р. Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е. 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

Sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

Tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

Корни этого уравнения: y 1 = - 1, y 2 = - 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу. Рассмотрим этот метод на примере:

П р и м е р. Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е. 6 sin (x / 2) · cos (x / 2) – 5 cos ² (x / 2) + 5 sin ² (x / 2) =

7 sin ² (x / 2) + 7 cos ² (x / 2) ,

2 sin ² (x / 2) – 6 sin (x / 2) · cos (x / 2) + 12 cos ² (x / 2) = 0 ,

tan ² (x / 2) – 3 tan (x / 2) + 6 = 0 ,

. . . . . . . . . .

5. Введение вспомогательного угла. Рассмотрим уравнение вида :

a sin x + b cos x = c ,

Где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого

Задача №1

Логика простая: будем поступать так, как поступали раньше не взирая на то, что теперь у тригонометрических функций стал более сложный аргумент!

Если бы мы решали уравнение вида:

То мы бы записали вот такой ответ:

Или (так как)

Но теперь в роли у нас выступаем вот такое выражение:

Тогда можно записать:

Наша с тобою цель - сделать так, чтобы слева стоял просто, без всяких «примесей»!

Давай постепенно от них избавляться!

Вначале уберём знаменатель при: для этого домножим наше равенство на:

Теперь избавимся от, разделив на него обе части:

Теперь избавимся от восьмёрки:

Полученное выражение можно расписать как 2 серии решений (по аналогии с квадратным уравнением, где мы либо прибавляем, либо вычитаем дискриминант)

Нам нужно найти наибольший отрицательный корень! Ясно, что надо перебирать.

Рассмотрим вначале первую серию:

Ясно, что если мы будем брать то в результате мы будем получать положительные числа, а они нас не интересуют.

Значит нужно брать отрицательным. Пусть.

При корень будет уже:

А нам нужно найти наибольший отрицательный!! Значит идти в отрицательную сторону здесь уже не имеет смысла. И наибольший отрицательный корень для этой серии будет равен.

Теперь рассматриваем вторую серию:

И опять подставляем: , тогда:

Не интересует!

Тогда увеличивать больше не имеет смысла! Будем уменьшать! Пусть, тогда:

Подходит!

Пусть. Тогда

Тогда - наибольший отрицательный корень!

Ответ:

Задача №2

Опять решаем, не взирая на сложный аргумент косинуса:

Теперь снова выражаем слева:

Умножаем обе стороны на

Делим обе стороны на

Всё, что осталось - это перенести вправо, изменив её знак с минуса на плюс.

У нас опять получается 2 серии корней, одна с, а другая с.

Нам нужно найти наибольший отрицательный корень. Рассмотрим первую серию:

Ясно, что первый отрицательный корень мы получим при, он будет равен и будет наибольшим отрицательным корнем в 1 серии.

Для второй серии

Первый отрицательный корень будет получен также при и будет равен. Так как, то - наибольший отрицательный корень уравнения.

Ответ: .

Задача №3

Решаем, не взирая на сложный аргумент тангенса.

Вот, вроде бы ничего сложного, не так ли?

Как и раньше, выражаем в левой части:

Ну вот и замечательно, здесь вообще всего одна серия корней! Опять найдём наибольший отрицательный.

Ясно, что он получается, если положить. И корень этот равен.

Ответ:

Теперь попробуй самостоятельно решить следующие задачи.

Домашняя работа или 3 задачи для самостоятельного решения.

  1. Ре-ши-те урав-не-ние.
  2. Ре-ши-те урав-не-ние.
    В от-ве-те на-пи-ши-те наи-мень-ший по-ло-жи-тель-ный ко-рень.
  3. Ре-ши-те урав-не-ние.
    В от-ве-те на-пи-ши-те наи-мень-ший по-ло-жи-тель-ный ко-рень.

Готов? Проверяем. Я не буду подробно описывать весь алгоритм решения, мне кажется, ему и так уделено достаточно внимания выше.

Ну что, всё правильно? Ох уж эти гадкие синусы, с ними всегда какие-то беды!

Ну что же, теперь ты умеешь решать простейшие тригонометрические уравнения!

Сверься с решениями и ответами:

Задача №1

Выразим

Наименьший положительный корень получится, если положить, так как, то

Ответ:

Задача №2

Наименьший положительный корень получится при.

Он будет равен.

Ответ: .

Задача №3

При получаем, при имеем.

Ответ: .

Эти знания помогут тебе решать многие задачи, с которыми ты столкнёшься в экзамене.

Если же ты претендуешь на оценку «5», то тебе просто необходимо перейти к чтению статьи для среднего уровня, которая будет посвящена решению более сложных тригонометрических уравнений (задание С1).

СРЕДНИЙ УРОВЕНЬ

В этой статье я опишу решение тригонометрических уравнений более сложного типа и как производить отбор их корней. Здесь я буду опираться на следующие темы:

  1. Тригонометрические уравнения для начального уровня (см выше).

Более сложные тригонометрические уравнения - это основа задач повышенной сложности. В них требуется как решить само уравнение в общем виде, так и найти корни этого уравнения, принадлежащие некоторому заданному промежутку.

Решение тригонометрических уравнений сводится к двум подзадачам:

  1. Решение уравнения
  2. Отбор корней

Следует отметить, что второе требуется не всегда, но все же в большинстве примеров требуется производить отбор. А если же он не требуется, то тебе скорее можно посочувствовать - это значит, что уравнение достаточно сложное само по себе.

Мой опыт разбора задач С1 показывает, что они как правило делятся на вот такие категории.

Четыре категории задач повышенной сложности (ранее С1)

  1. Уравнения, сводящиеся к разложению на множители.
  2. Уравнения, сводящиеся к виду.
  3. Уравнения, решаемые заменой переменной.
  4. Уравнения, требующие дополнительного отбора корней из-за иррациональности или знаменателя.

Говоря по-простому: если тебе попалось одно из уравнений первых трех типов , то считай, что тебе повезло. Для них как правило дополнительно нужно подобрать корни, принадлежащие некоторому промежутку.

Если же тебе попалось уравнение 4 типа , то тебе повезло меньше: с ним нужно повозиться подольше и повнимательнее, зато довольно часто в нем не требуется дополнительно отбирать корни. Тем не менее данный тип уравнений я буду разбирать в следующей статье, а эту посвящу решению уравнений первых трех типов.

Уравнения, сводящиеся к разложению на множители

Самое важное, что тебе нужно помнить, чтобы решать уравнения этого типа это

Как показывает практика, как правило, этих знаний достаточно. Давай обратимся к примерам:

Пример 1. Уравнение, сводящиеся к разложению на множители с помощью формул приведения и синуса двойного угла

  • Ре-ши-те урав-не-ние
  • Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие от-рез-ку

Здесь, как я и обещал, работают формулы приведения:

Тогда мое уравнение примет вот такой вид:

Тогда мое уравнение примет следующую форму:

Недальновидный ученик мог бы сказать: а теперь я сокращу обе части на, получаю простейшее уравнение и радуюсь жизни! И будет горько заблуждаться!

ЗАПОМНИ: НИКОГДА НЕЛЬЗЯ СОКРАЩАТЬ ОБЕ ЧАСТИ ТРИГОНОМЕТРИЧЕСКОГО УРАВНЕНИЯ НА ФУНКЦИЮ, СОДЕРЖАЩУЮ НЕИЗВЕСТНУЮ! ТАКИМ ОБРАЗОМ, ТЫ ТЕРЯЕШЬ КОРНИ!

Так что же делать? Да все просто, переносить все в одну сторону и выносить общий множитель:

Ну вот, на множители разложили, ура! Теперь решаем:

Первое уравнение имеет корни:

А второе:

На этом первая часть задачи решена. Теперь нужно отобрать корни:

Промежуток вот такой:

Или его еще можно записать вот так:

Ну что, давай отбирать корни:

Вначале поработаем с первой серией (да и проще она, что уж говорить!)

Так как наш промежуток - целиком отрицательный, то нет нужды брать неотрицательные, все равно они дадут неотрицательные корни.

Возьмем, тогда - многовато, не попадает.

Пусть, тогда - снова не попал.

Еще одна попытка - , тогда - есть, попал! Первый корень найден!

Стреляю еще раз: , тогда - еще раз попал!

Ну и еще разок: : - это уже перелет.

Так что из первой серии промежутку принадлежат 2 корня: .

Работаем со второй серией (возводим в степень по правилу):

Недолет!

Снова недолет!

Опять недолет!

Попал!

Перелет!

Таким образом, моему промежутку принадлежат вот такие корни:

Вот по такому алгоритму мы и будем решать все другие примеры. Давай вместе потренируемся еще на одном примере.

Пример 2. Уравнение, сводящиеся к разложению на множители с помощью формул приведения

  • Решите уравнение

Решение:

Опять пресловутые формулы приведения:

Опять не вздумай сокращать!

Первое уравнение имеет корни:

А второе:

Теперь снова поиск корней.

Начну со второй серии, мне про нее уже все известно из предыдущего примера! Посмотри и убедись, что корни, принадлежащие промежутку следующие:

Теперь первая серия и она попроще:

Если - подходит

Если - тоже годится

Если - уже перелет.

Тогда корни будут следующие:

Самостоятельная работа. 3 уравнения.

Ну что, техника тебе ясна? Решение тригонометрических уравнений уже не кажется таким сложным? Тогда быстренько прорешай следующие задачки самостоятельно, а потом мы с тобой будем решать другие примеры:

  1. Решите уравнение
    Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие промежутку.
  2. Ре-ши-те урав-не-ние
    Ука-жи-те корни урав-не-ния, при-над-ле-жа-щие от-рез-ку
  3. Ре-ши-те урав-не-ние
    Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие про-ме-жут-ку.

Уравнение 1.

И снова формула приведения:

Первая серия корней:

Вторая серия корней:

Начинаем отбор для промежутка

Ответ: , .

Уравнение 2. Проверка самостоятельной работы.

Довольно хитрая группировка на множители (применю формулу синуса двойного угла):

тогда или

Это общее решение. Теперь надо отбирать корни. Беда в том, что мы не можем сказать точное значение угла, косинус которого равен одной четверти. Поэтому я не могу просто так избавиться от арккосинуса - вот такая досада!

Что я могу сделать, так это прикинуть, что так как, то.

Составим таблицу: промежуток:

Ну что же, путем мучительных поисков мы пришли к неутешительному выводу о том, что наше уравнение имеет один корень на указанном промежутке: \displaystyle arccos\frac{1}{4}-5\pi

Уравнение 3. Проверка самостоятельной работы.

Уравнение пугающего вида. Однако решается довольно просто путем применения формулы синуса двойного угла:

Сократим на 2:

Сгруппируем первое слагаемое со вторым и третье с четвертым и вынесем общие множители:

Ясно, что первое уравнение корней не имеет, а теперь рассмотрим второе:

Вообще я собирался чуть позже остановиться на решении таких уравнений, но раз уж подвернулось, то делать нечего, надо решать...

Уравнения вида:

Данное уравнение решается делением обеих частей на:

Таким образом, наше уравнение имеет единственную серию корней:

Нужно найти те из них, которые принадлежат промежутку: .

Опять построим табличку, как я делал и ранее:

Ответ: .

Уравнения, сводящиеся к виду:

Ну вот, теперь самое время переходить ко второй порции уравнений, тем более, что я уже и так проболтался в чем состоит решение тригонометрических уравнений нового типа. Но не лишним будет повторить, что уравнение вида

Решается делением обеих частей на косинус:

  1. Ре-ши-те урав-не-ние
    Ука-жи-те корни урав-не-ния, при-над-ле-жа-щие от-рез-ку.
  2. Ре-ши-те урав-не-ние
    Ука-жи-те корни урав-не-ния, при-над-ле-жа-щие про-ме-жут-ку.

Пример 1.

Первое - ну совсем простое. Перенесем вправо и применим формулу косинуса двойного угла:

Ага! Уравнение вида: . Делю обе части на

Делаем отсев корней:

Промежуток:

Ответ:

Пример 2.

Все тоже довольно тривиально: раскроем скобки справа:

Основное тригонометрическое тождество:

Синус двойного угла:

Окончательно получим:

Отсев корней: промежуток.

Ответ: .

Ну как тебе техника, не слишком сложна? Я надеюсь, что нет. Сразу можно оговориться: в чистом виде уравнения, которые тут же сводятся к уравнению относительно тангенса, встречаются довольно редко. Как правило, этот переход (деление на косинус) является лишь частью более сложной задачи. Вот тебе пример , чтобы ты мог поупражняться:

  • Ре-ши-те урав-не-ние
  • Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие от-рез-ку.

Давай сверяться:

Уравнение решается сразу же, достаточно поделить обе части на:

Отсев корней:

Ответ: .

Так или иначе, нам еще предстоит встретиться с уравнениями того вида, которые мы только что разобрали. Однако нам еще рано закругляться: остался еще один «пласт» уравнений, которые мы не разобрали. Итак:

Решение тригонометрических уравнений заменой переменной

Здесь все прозрачно: смотрим пристально на уравнение, максимально его упрощаем, делаем замену, решаем, делаем обратную замену! На словах все очень легко. Давай посмотрим на деле:

Пример.

  • Решить уравнение: .
  • Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие от-рез-ку.

Ну что же, здесь замена сама напрашивается к нам в руки!

Тогда наше уравнение превратится вот в такое:

Первое уравнение имеет корни:

А второе вот такие:

Теперь найдем корни, принадлежащие промежутку

Ответ: .

Давай вместе разберем чуть более сложный пример :

  • Ре-ши-те урав-не-ние
  • Ука-жи-те корни дан-но-го урав-не-ния, при-над-ле-жа-щие про-ме-жут-ку.

Здесь замена сразу не видна, более того, она не очень очевидна. Давай вначале подумаем: а что мы можем сделать?

Можем, например, представить

А заодно и

Тогда мое уравнение примет вид:

А теперь внимание, фокус:

Давай разделим обе части уравнения на:

Внезапно мы с тобой получили квадратное уравнение относительно! Сделаем замену, тогда получим:

Уравнение имеет следующие корни:

Неприятная вторая серия корней, но ничего не поделаешь! Производим отбор корней на промежутке.

Нам также нужно учитывать, что

Так как и, то

Ответ:

Для закрепления, прежде чем ты сам будешь решать задачи, вот тебе еще упражнение :

  • Ре-ши-те урав-не-ние
  • Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие про-ме-жут-ку.

Здесь нужно держать ухо востро: у нас появились знаменатели, которые могут быть нулевыми! Поэтому надо быть особо внимательными к корням!

Прежде всего, мне нужно преобразовать уравнение так, чтобы я мог сделать подходящую замену. Я не могу придумать сейчас ничего лучше, чем переписать тангенс через синус и косинус:

Теперь я перейду от косинуса к синусу по основному тригонометрическому тождеству:

И, наконец, приведу все к общему знаменателю:

Теперь я могу перейти к уравнению:

Но при (то есть при).

Теперь все готово для замены:

Тогда или

Однако обрати внимание, что если, то при этом!

Кто от этого страдает? Беда с тангенсом, он не определен, когда косинус равен нулю (происходит деление на ноль).

Таким образом, корни уравнения следующие:

Теперь производим отсев корней на промежутке:

- подходит
- перебор

Таким образом, наше уравнение имеет единственный корень на промежутке, и он равен.

Видишь: появление знаменателя (также, как и тангенса, приводит к определенным затруднениям с корнями! Тут нужно быть более внимательным!).

Ну что же, мы с тобой почти закончили разбор тригонометрических уравнений, осталось совсем немного - самостоятельно решить две задачи. Вот они.

  1. Решите уравнение
    Най-ди-те все корни этого урав-не-ния, при-над-ле-жа-щие от-рез-ку.
  2. Ре-ши-те урав-не-ние
    Ука-жи-те корни этого урав-не-ния, при-над-ле-жа-щие от-рез-ку.

Решил? Не очень сложно? Давай сверяться:

  1. Работаем по формулам приведения:

    Подставляем в уравнение:

    Перепишем все через косинусы, чтобы удобнее было делать замену:

    Теперь легко сделать замену:

    Ясно, что - посторонний корень, так как уравнение решений не имеет. Тогда:

    Ищем нужные нам корни на промежутке

    Ответ: .


  2. Здесь замена видна сразу:

    Тогда или

    - подходит! - подходит!
    - подходит! - подходит!
    - много! - тоже много!

    Ответ:

Ну вот, теперь все! Но решение тригонометрических уравнений на этом не заканчивается, за бортом у нас остались самые сложные случаи: когда в уравнениях присутствует иррациональность или разного рода «сложные знаменатели». Как решать подобные задания мы рассмотрим в статье для продвинутого уровня.

ПРОДВИНУТЫЙ УРОВЕНЬ

В дополнение к рассмотренным в предыдущих двух статьях тригонометрическим уравнениям, рассмотрим еще один класс уравнений, которые требуют еще более внимательного анализа. Данные тригонометрические примеры содержат либо иррациональность, либо знаменатель, что делает их анализ более сложным . Тем не менее ты вполне можешь столкнуться с данными уравнениями в части С экзаменационной работы. Однако нет худа без добра: для таких уравнений уже, как правило, не ставится вопрос о том, какие из его корней принадлежат заданному промежутку. Давай не будем ходить вокруг да около, а сразу тригонометрические примеры.

Пример 1.

Решить уравнение и найти те корни, которые принадлежат отрезку.

Решение:

У нас появляется знаменатель, который не должен быть равен нулю! Тогда решить данное уравнение - это все равно, что решить систему

Решим каждое из уравнений:

А теперь второе:

Теперь давай посмотрим на серию:

Ясно, что нам не подходит вариант, так как при этом у нас обнуляется знаменатель (см. на формулу корней второго уравнения)

Если же - то все в порядке, и знаменатель не равен нулю! Тогда корни уравнения следующие: , .

Теперь производим отбор корней, принадлежащих промежутку.

- не подходит - подходит
- подходит - подходит
перебор перебор

Тогда корни следующие:

Видишь, даже появление небольшой помехи в виде знаменателя существенно отразилось на решении уравнения: мы отбросили серию корней, нулящих знаменатель. Еще сложнее может обстоять дело, если тебе попадутся тригонометрические примеры имеющие иррациональность.

Пример 2.

Решите уравнение:

Решение:

Ну хотя бы не надо отбирать корни и то хорошо! Давай вначале решим уравнение, не взирая на иррациональность:

И что, это все? Нет, увы, так было бы слишком просто! Надо помнить, что под корнем могут стоять только неотрицательные числа. Тогда:

Решение этого неравенства:

Теперь осталось выяснить, не попала ли ненароком часть корней первого уравнения туда, где не выполяется неравенство.

Для этого можно опять воспользоваться таблицей:

: , но Нет!
Да!
Да!

Таким образом, у меня «выпал» один из корней! Он получается, если положить. Тогда ответ можно записать в следующем виде:

Ответ:

Видишь, корень требует еще более пристального внимания! Усложняем: пусть теперь у меня под корнем стоит тригонометрическая функция.

Пример 3.

Как и раньше: вначале решим каждое отдельно, а потом подумаем, что же мы наделали.

Теперь второе уравнение:

Теперь самое сложное - выяснить, не получаются ли отрицательные значения под арифметическим корнем, если мы подставим туда корни из первого уравнения:

Число надо понимать как радианы. Так как радиана - это примерно градусов, то радианы - порядка градусов. Это угол второй четверти. Косинус второй четверти имеет какой знак? Минус. А синус? Плюс. Так что можно сказать про выражение:

Оно меньше нуля!

А значит - не является корнем уравнения.

Теперь черед.

Сравним это число с нулем.

Котангенс - функция убывающая в 1 четверти (чем меньше аргумент, тем больше котангенс). радианы - это примерно градусов. В то же время

так как, то, а значит и
,

Ответ: .

Может ли быть еще сложнее? Пожалуйста! Будет труднее, если под корнем по-прежнему тригонометрическая функция, а вторая часть уравнения - снова тригонометрическая функция.

Чем больше тригонометрических примеров, тем лучше, смотри дальше:

Пример 4.

Корень не годится, ввиду ограниченности косинуса

Теперь второе:

В то же время по определению корня:

Надо вспомнить единичную окружность: а именно те четверти, где синус меньше нуля. Какие это четверти? Третья и четвертая. Тогда нас будут интересовать те решения первого уравнения, которые лежат в третьей или четвертой четверти.

Первая серия дает корни, лежащие на пересечении третьей и четвертой четверти. Вторая же серия - ей диаметрально противоположная - и порождает корни, лежащие на границе первой и второй четверти. Поэтому эта серия нам не подходит.

Ответ: ,

И опять тригонометрические примеры с «трудной иррациональностью» . Мало того, что у нас снова под корнем тригонометрическая функция, так теперь она еще и в знаменателе!

Пример 5.

Ну, ничего не поделаешь - поступаем как и раньше.

Теперь работаем со знаменателем:

Я не хочу решать тригонометрическое неравенство, а потому поступлю хитро: возьму и подставлю в неравенство мои серии корней:

Если - четное, то имеем:

так как, то все углы вида лежат в четвертой четверти. И снова сакральный вопрос: каков знак синуса в четвертой четверти? Отрицательный. Тогда неравенство

Если же -нечетное, то:

В какой четверти лежит угол? Это угол второй четверти. Тогда все углы - снова углы второй четверти. Синус там положительный. Как раз то, что надо! Значит, серия:

Подходит!

Точно так же разбираемся со второй серией корней:

Подставляем в наше неравенство:

Если - четное, то

Углы первой четверти. Синус там положительный, значит серия подходит. Теперь если - нечетное, то:

тоже подходит!

Ну вот, теперь записываем ответ!

Ответ:

Ну вот, это был, пожалуй, наиболее трудоемкий случай. Теперь я предлагаю тебе задачи для самостоятельного решения.

Тренировка

  1. Решите и найдите все корни уравнения, принадлежащие отрезку.

Решения:


  1. Первое уравнение:
    или
    ОДЗ корня:

    Второе уравнение:

    Отбор корней, которые принадлежат промежутку

    Ответ:

  2. Или
    или
    Но

    Рассмотрим: . Если - четное, то
    - не подходит!
    Если - нечетное, : - подходит!
    Значит, наше уравнение имеет такие серии корней:
    или
    Отбор корней на промежутке:

    - не подходит - подходит
    - подходит - много
    - подходит много

    Ответ: , .

    Или
    Так как, то при тангенс не определен. Тут же отбрасываем эту серию корней!

    Вторая часть:

    В то же время по ОДЗ требуется, чтобы

    Проверяем найденные в первом уравнении корни:

    Если знак:

    Углы первой четверти, где тангенс положительный. Не подходит!
    Если знак:

    Угол четвертой четверти. Там тангенс отрицательный. Подходит. Записываем ответ:

Ответ: , .

Мы вместе разобрали в этой статье сложные тригонометрические примеры, но тебе стоит прорешать уравнения самому.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Тригонометрическое уравнение - это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.

Существует два способа решения тригонометрических уравнений:

Первый способ - с использованием формул.

Второй способ - через тригонометрическую окружность.

Позволяет измерять углы, находить их синусы, косинусы и прочее.