Что такое атф и адф. Свободные нуклеотиды: цамф и цгмф, атф, адф, фад, над. Строение, функции. Пути образования АТФ

Источником энергии для организма человека служат процессы окисления химических органических соединений до менее энергетически ценных конечных продуктов. С помощью ферментных систем происходит извлечение энергии из внешних субстратов (питательный веществ) в реакциях их ступенчатого окисления, приводящего к высвобождению энергии небольшими порциями. Внешние источники энергии должны быть трансформированы в клетке в определенную форму, удобную для обеспечения внутриклеточных энергетических нужд. Такой формой преимущественно является молекула аденозинтрифосфат (АТФ) , представляющая мононуклеотид (рис. 6).

Рис. 6. Структурная формула молекулы аденозинтрифосфорной кислоты (АТФ)

АТФ является макроэргическим соединением , оно содержит две связи богатые энергией (макроэргические связи) : между вторым и третьим остатками фосфорной кислоты. Макроэргические связи – ковалентные связи в химических соединениях клетки, которые гидролизуются с выделением значительного количества энергии – 30 кДж/моль и более. При гидролизе каждой из макроэргических связей в молекуле АТФ выделяется около 32 кДж/моль. Гидролиз АТФ осуществляют специальные ферменты, называемые АТФ-азами:

АТФ ® АДФ + Н3РО4; АДФ ® АМФ + Н3РО4

В клетке существуют и другие макроэргические соединения. Большинство из них, также как и АТФ, содержат высокоэнергетическую фосфатную связь. К этой группе соединений относятся и другие нуклеозидтрифосфаты, ацилфосфаты, фосфоенолпируват, креатинфосфат и другие молекулы. Кроме того, в живых организмах присутствуют молекулы с высокоэнергетической тиоэфирной связью, ацилтиоэфиры (рис. 7).

Однако наибольшую роль в энергетических клеточных процессов играет все же молекула АТФ. Эта молекула обладает рядом свойств, позволяющей ей занимать столь значительное место в клеточном метаболизме. Во-первых, молекула АТФ термодинамически нестабильна, о чем говорит изменение свободной энергии гидролиза АТФ DG0 = –31,8 кДж/моль. Во-вторых, молекула АТФ химически высокостабильна. Скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, что позволяет эффективно сохранять энергию, препятствуя ее бесполезному рассеиванию в тепло. В-третьих, молекула АТФ обладает малыми размерами, что позволяет ей поступать в различные внутриклеточные участки путем диффузии. И, наконец, энергия гидролиза АТФ имеет промежуточное значение по сравнению с другими фосфорилированными клеточными молекулами, что позволяет АТФ переносить энергию от высокоэнергетических соединений к низкоэнергетическим.


Рис. 7. Типы соединений, для которых характерна высокая энергия гидролиза

Существуют два механизма синтеза АТФ в клетке: субстратное фосфорилирование и мембранное фосфорилирование. Субстратное фосфорилирование – ферментативный перенос фосфатной группы на молекулы АДФ с образованием АТФ, происходящий в цитоплазме. При субстратном фосфорилировании в результате определенных окислительно-восстановительных реакций образуются богатые энергией нестабильные молекулы, фосфатная группа которых с помощью соответствующих ферментов переносится на АДФ с образованием АТФ. Реакции субстратного фосфорилирования протекают в цитоплазме и катализируются растворимыми ферментами.

Мембранное фосфорилирование – синтез молекулы АТФ с использованием энергии трансмембранного градиента ионов водорода, происходящий на мембране митохондрий. Мембранное фосфорилирование происходит на мембране митохондрий, в которой локализована определенная цепь молекул-переносчиков водорода и электронов. Атомы водорода и электроны отщепляются от окисляющихся органических молекул и с помощью специальных переносчиков попадают в электронтранспортную цепь (дыхательную цепь), локализованную на внутренней мембране митохондрий. Эта цепь представляет собой комплекс мембранных белков, расположенных строго определенным образом. Эти белки являются ферментами, катализирующими окислительно-восстановительные реакции. Переходя от одного белка-переносчика дыхательной цепи к другому, электрон спускается на все более низкий энергетический уровень. Перенос электронов по электронтранспортной цепи сопряжен с выделением протонов из клетки во внешнюю среду. В результате внешняя часть клеточной мембраны приобретает положительный заряд, а внутренняя – отрицательный, возникает разделение зарядов. Кроме того, на мембране образуется градиент ионов водорода. Таким образом, энергия, высвобождаемая при переносе электронов, первоначально запасается в форме электрохимического трансмембранного градиента ионов водорода ( D mН+) . То есть происходит превращение химической и электромагнитной энергии в электрохимическую, которая может быть в дальнейшем использована клеткой для синтеза АТФ. Реакция синтеза АТФ за счет DmН+ и называется мембранным фосфорилированием; мембраны, на которых она осуществляется – энергопреобразующими или сопрягающими . Превращение энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ объясняет хемоосмотическая теория энергетического сопряжения (рис. 8), разработанная английским биохимиком П. Митчеллом. Сопрягающую мембрану можно уподобить плотине, которая сдерживает напор воды, также как и мембрана сдерживает градиент ионов водорода. Если плотину открыть, то энергия воды может быть использована для выполнения работы или преобразована в другую форму энергии, например электрическую, как это и происходит в гидроэлектростанциях. Аналогично в клетке имеется механизм, позволяющий преобразовать энергию трансмембранного градиента ионов водорода в энергию химической связи АТФ. Разрядка трансмембранного градиента ионов водорода происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса . Энергия протона, поступающего через этот ферментативный комплекс в клетку из внешней среды, используется для синтеза молекулы АТФ из АДФ и остатка фосфорной кислоты. Происходящий процесс может быть выражен уравнением:

АДФ + Фн+ nН+нар à АТФ + Н2О + nН+внутр.

АТФ-синтазный ферментативный комплекс служит механизмом, обеспечивающим взаимопревращение двух форм клеточной энергии: DmН+ « АТФ.

Рис. 8. Схема работы электронтранспортной цепи и АТФ-синтазного комплекса АН 2 и В – донор и акцептор электронов, соответственно; 1 , 2 , 3 – компоненты электронтранспортной цепи

Стартовым переносчиком дыхательной цепи митохондрий является НАД(Ф)Н-дегидрогеназа, имеющая флавиновую природу. Этот фермент акцептирует протоны и электроны от первичной дегидрогеназы, фермента, отнимающего атомы водорода непосредственно с субстрата. С НАД(Ф)Н-дегидрогеназы электроны передаются на переносчик хиноновой природы, убихинон (кофермент Q), а далее на цитохромы (рис. 9). В митохондриях имеется 5 различных цитохромов (b, c, c1, a, a3). Цитохромы представляют собой гемопротеины, их небелковая часть является гемом и содержит катион металла. Цитохромы окрашены в красно-коричневый цвет. Цитохромы классов b и c содержат катион железа, а цитохромы класса a – катион меди.

Рис. 9. Дыхательная электронтранспортная цепь митохондрий

Конечный цитохром (a+a3) переносит электроны на кислород, т.е. является цитохромоксидазой. На кислород переносится 4 электрона и образуется вода. При синтезе молекулы АТФ через АТФ-синтазный комплекс проходит по крайней мере два протона. Количество синтезируемых молекул АТФ зависит от числа участков цепи, в которых протоны выделяются во внешнею среду. В митохондрии есть 3 участка окислительной цепи, где протоны выводятся наружу и генерируется Dmн+: в начале цепи на НАД(Ф)Н-дегидогеназе, на убихиноне и на цитохромоксидазе (рис. 9). В митохондриях при окислении одной молекулы НАД(Ф)Н по цепи переносится два электрона, а во внешнею среду выводится 6Н+ и, соответственно, синтезируется три молекулы АТФ.

АТФ (аденозинтрифосфат) – органическое соединение из группы нуклеозидтрифосфатов, играющее главную роль в целом ряде биохимических процессов, прежде всего в обеспечении клеток энергией.

Навигация по статье

Строение и синтез АТФ

Аденозинтрифосфат представляет собой аденин, к которому присоединены три молекулы ортофосфорной кислоты. Аденин входит в состав многих других соединений, широко распространенных в живой природе, в том числе нуклеиновых кислот.

Выделение энергии, которая используется организмом в самых разных целях, происходит в процессе гидролиза АТФ, приводящего к появлению одной или двух свободных молекул фосфорной кислоты. В первом случае Аденозинтрифосфат превращается в аденозиндифосфат (АДФ), во втором – в аденозинмонофосфат (АМФ).

Синтез АТФ, в живом организме происходит за счет соединения аденозиндифосфата с фосфорной кислотой, может протекать несколькими путями:

  1. Основной: окислительное фосфорилирование, которое происходит во внутриклеточных органеллах – митохондриях, в процессе окисления органических веществ.
  2. Второй путь: субстратное фосфорилирование, протекающее в цитоплазме и играющее центральную роль в анаэробных процессах.

Функции АТФ

Аденозинтрифосфат не играет сколько-нибудь заметной роли в хранении энергии, исполняя скорее транспортные функции в клеточном энергетическом обмене. Аденозинтрифосфат синтезируется из АДФ и вскоре вновь превращается в АДФ с выделением полезной энергии.

Применительно к позвоночным животным и человеку основной функцией АТФ является обеспечение двигательной активности мышечных волокон.

В зависимости от продолжительности усилия, краткосрочная это работа или длительная (циклическая) нагрузка, энергетические процессы достаточно сильно отличаются. Но во всех них важнейшую роль играет аденозинтрифосфат.

Структурная формула АТФ:

Помимо энергетической функции Аденозинтрифосфат играет существенную роль в передаче сигнала между нервными клетками и других межклеточных взаимодействиях, в регуляции действия ферментов и гормонов. Является одним из исходных продуктов для синтеза протеинов.

Сколько образуется молекул АТФ при гликолизе и окислении?

Время жизни одной молекулы обычно составляет не более минуты, так что в отдельный момент содержание этого вещества в организме взрослого человека – порядка 250 грамм. При том, что суммарное количество Аденозинтрифосфата, синтезируемое за сутки, как правило сравнимо с собственным весом организма.

Процесс гликолиза проходит в 3 этапа:

  1. Подготовительный.
    Входе это этапа молекул Аденозинтрифосфата не образуется
  2. Анаэробный.
    Образуется 2 молекулы АТФ.
  3. Аэробный.
    Во время него происходит окисление ПВК, пировиноградной кислоты. Образуется 36 молекул АТФ из 1 молекулы глюкозы.

Всего в процессе гликолиза 1 молекулы глюкозы образуется 38 молекул АТФ: 2 во время анаэробного этапа гликолиза, 36 при окислении пировиноградной кислоты.

На рисунке представлены два способа изображения структуры АТФ . Аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ) относятся к классу соединений, называемых нуклеогидами. Молекула нук-леотида состоит из пятиуглеродного сахара, азотистого основания и фосфорной кислоты. В молекуле АМФ сахар представлен рибо-зой, а основание - аденином. В молекуле АДФ две фосфатные группы, а в молекуле АТФ - три.

Значение АТФ

При расщеплении АТФ на АДФ и неорганический фосфат (Фн) высвобождается энергия:

Реакция идет с поглощением воды , т. е. представляет собой гидролиз (в нашей статье мы много раз встречались с этим весьма распространенным типом биохимических реакций). Отщепившаяся от АТФ третья фосфатная группа остается в клетке в виде неорганического фосфата (Фн). Выход свободной энергии при этой реакции составляет 30,6 кДж на 1 моль АТФ.

Из АДФ и фосфата может быть вновь синтезирован АТФ, но для этого требуется затратить 30,6 кДж энергии на 1 моль вновь образованного АТФ.

В этой реакции , называемой реакцией конденсации, вода выделяется. Присоединение фосфата к АДФ называется реакцией фосфорилирования. Оба приведенных выше уравнения можно объединить:


Катализирует данную обратимую реакцию фермент, называемый АТФазой .

Всем клеткам, как уже было сказано, для выполнения их работы необходима энергия и для всех клеток любого организма источником этой энергии служит АТФ . Поэтому АТФ называют «универсальным носителем энергии» или «энергетической валютой» клеток. Подходящей аналогией служат электрические батарейки. Вспомните, для чего только мы их не используем. Мы можем получать с их помощью в одном случае свет, в другом звук, иногда механическое движение, а иногда нам нужна от них собственно электрическая энергия. Удобство батареек в том, что один и тот же источник энергии - батарейку - мы можем использовать для самых разных целей в зависимости от того, куда мы ее поместим. Эту же роль играет в клетках АТФ. Он поставляет энергию для таких различных процессов, как мышечное сокращение, передача нервных импульсов, активный транспорт веществ или синтез белков, и для всех прочих видов клеточной активности. Для этого он должен быть просто «подключен» к соответствующей части аппарата клетки.

Аналогию можно продолжить. Батарейки требуется сначала изготовить, а некоторые из них (аккумуляторные) так же, как и , можно перезарядить. При изготовлении батареек на фабрике в них должно быть заложено (и тем самым израсходовано фабрикой) определенное количество энергии. Для синтеза АТФ тоже требуется энергия; источником ее служит окисление органических веществ в процессе дыхания. Поскольку для фосфорилирования АДФ энергия высвобождается в процессе окисления, такое фосфорилирование называют окислительным. При фотосинтезе АТФ образуется за счет световой энергии. Этот процесс называют фотофос-форилированием (см. разд. 7.6.2). Есть в клетке и «фабрики», производящие большую часть АТФ. Это митохондрии; в них размешаются химические «сборочные линии», на которых образуется АТФ в процессе аэробного дыхания. Наконец, в клетке происходит и перезарядка разрядившихся «аккумуляторов»: после того как АТФ, высвободив заключенную в нем энергию, превратится в АДФ и Фн, он может быть вновь быстро синтезирован из АДФ и Фн за счет энергии, полученной в процессе дыхания от окисления новой порции органических веществ.

Количество АТФ в клетке в любой данный момент очень невелико. Поэтому в АТФ следует видеть только носителя энергии, а не ее депо. Для длительного хранения энергии служат такие вещества, как жиры или гликоген. Клетки весьма чувствительны к уровню АТФ. Как только скорость его использования возрастает, одновременно возрастает и скорость процесса дыхания, поддерживающего этот уровень.

Роль АТФ в качестве связующего звена между клеточным дыханием и процессами, идущими с потреблением энергии, видна из рисунка Схема эта выглядит простой, но она иллюстрирует очень важную закономерность.

Можно, таким образом, сказать, что в целом функция дыхания заключается в том, чтобы вырабатывать АТФ .


Суммируем вкратце сказанное выше.
1. Для синтеза АТФ из АДФ и неорганического фосфата требуется 30,6 кДж энергии на 1 моль АТФ.
2. АТФ присутствует во всех живых клетках и является, следовательно, универсальным носителем энергии. Другие носители энергии не используются. Это упрощает дело - необходимый клеточный аппарат может быть более простым и работать более эффективно и экономно.
3. АТФ легко доставляет энергию в любую часть клетки к любому нуждающемуся в энергии процессу.
4. АТФ быстро высвобождает энергию. Для этого требуется всего лишь одна реакция - гидролиз.
5. Скорость воспроизводства АТФ из АДФ и неорганического фосфата (скорость процесса дыхания) легко регулируется в соответствии с потребностями.
6. АТФ синтезируется во время дыхания за счет химической энергии, высвобождаемой при окислении таких органических веществ, как глюкоза, и во время фотосинтеза - за счет солнечной энергии. Образование АТФ из АДФ и неорганического фосфата называют реакцией фос-форилирования. Если энергию для фос-форилирования поставляет окисление, то говорят об окислительном фосфорилиро-вании (этот процесс протекает при дыхании), если же для фосфорилирования используется световая энергия, то процесс называют фотофосфорилированием (это имеет место при фотосинтезе).

АТФ - это сокращённое название Аденозин Три-Фосфорной кислоты. А также можно встретить название Аденозинтрифосфат. Это нуклеоид, который играет огромную роль в обмене энергией в организме. Аденозин Три-Фосфорная кислота - это универсальный источник энергии, участвующий во всех биохимических процессах организма. Открыта эта молекула была в 1929 году учёным Карлом Ломанном. А значимость ее была подтверждена Фрицем Липманом в 1941 году.

Структура и формула АТФ

Если говорить об АТФ более подробно , то это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе она же даёт энергию для движения. При расщеплении молекулы АТФ происходит сокращение мышечного волокна, вследствие чего выделяется энергия, позволяющая произойти сокращению. Синтезируется Аденозинтрифосфат из инозина - в живом организме.

Для того чтобы дать организму энергию Аденозинтрифосфату необходимо пройти несколько этапов. Вначале отделяется один из фосфатов - с помощью специального коэнзима. Каждый из фосфатов даёт десять калорий. В процессе вырабатывается энергия и получается АДФ (аденозин дифосфат).

Если организму для действия нужно больше энергии , то отделяется ещё один фосфат. Тогда формируется АМФ (аденозин монофосфат). Главный источник для выработки Аденозинтрифосфата - это глюкоза, в клетке она расщепляется на пируват и цитозол. Аденозинтрифосфат насыщает энергией длинные волокна, которые содержат протеин - миозин. Именно он формирует мышечные клетки.

В моменты, когда организм отдыхает, цепочка идёт в обратную сторону, т. е. формируется Аденозин Три-Фосфорная кислота. Опять же в этих целях используется глюкоза. Созданные молекулы Аденозинтрифосфата будут вновь использоваться, как только это станет необходимо. Когда энергия не нужна, она сохраняется в организме и высвобождается как только это потребуется.

Молекула АТФ состоит из нескольких, а точнее, трёх компонентов:

  1. Рибоза - это пятиуглеродный сахар, такой же лежит в основе ДНК.
  2. Аденин - это объединённые атомы азота и углерода.
  3. Трифосфат.

В самом центре молекулы Аденозинтрифосфата находится молекула рибозы, а её край является основной для аденозина. С другой стороны рибозы расположена цепочка из трёх фосфатов.

Системы АТФ

При этом нужно понимать, что запасов АТФ будет достаточно только первые две или три секунды двигательной активности, после чего её уровень снижается. Но при этом работа мышц может осуществляться только с помощью АТФ. Благодаря специальным системам в организме постоянно синтезируются новые молекулы АТФ. Включение новых молекул происходит в зависимости от длительности нагрузки.

Молекулы АТФ синтезируют три основные биохимические системы:

  1. Фосфагенная система (креатин-фосфат).
  2. Система гликогена и молочной кислоты.
  3. Аэробное дыхание.

Рассмотрим каждую из них в отдельности.

Фосфагенная система - в случае если мышцы будут работать недолго, но крайне интенсивно (порядка 10 секунд), будет использоваться фосфагенная система. В этом случае АДФ связывается с креатин фосфатом. Благодаря этой системе происходит постоянная циркуляция небольшого количества Аденозинтрифосфата в мышечных клетках. Так как в самих мышечных клетках тоже имеется фосфат креатина, он используется, чтобы восстановить уровень АТФ после высокоинтенсивной короткой работы. Но уже секунд через десять уровень креатин фосфата начинает снижаться - такой энергии хватает на короткий забег или интенсивную силовую нагрузку в бодибилдинге.

Гликоген и молочная кислота - снабжает энергией организм медленнее, чем предыдущая. Она синтезирует АТФ, которой может хватить на полторы минуты интенсивной работы. В процессе глюкоза в мышечных клетках формируется в молочную кислоту за счёт анаэробного метаболизма .

Так как в анаэробном состоянии кислород организмом не используется, то данная система даёт энергию так же как и в аэробной системе, но время экономится. В анаэробном режиме мышцы сокращаются крайне мощно и быстро. Такая система может позволить пробежать четыреста метров спринта или более длительную интенсивную тренировку в зале. Но долгое время работать таким образом не позволит болезненность в мышцах, которая появляется из-за переизбытка молочной кислоты.

Аэробное дыхание - эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать Аденозинтрифосфат из углеводов, жиров и протеинов. В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов. Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких противодействий, препятствующих со стороны - как препятствует молочная кислота в анаэробном процессе.

Роль АТФ в организме

Из предыдущего описания понятно, что основная роль аденозинтрифосфата в организме - это обеспечение энергией всех многочисленных биохимических процессов и реакций в организме. Большинство энергозатратных процессов у живых существ происходят благодаря АТФ.

Но помимо этой главной функции, аденозинтрифосфат выполняет и другие:

Роль АТФ в организме и жизни человека хорошо известна не только учёным, но и многим спортсменам и бодибилдерам, так как её понимание помогает сделать тренировки более эффективными и правильно рассчитывать нагрузки. Для людей, которые занимаются силовыми тренировками в зале, спринтерскими забегами и другими видами спорта, очень важно понимать, какие упражнения требуется выполнять в тот или иной момент времени. Благодаря этому можно сформировать желаемое строение тела, проработать мышечную структуру, снизить излишний вес и добиться других желаемых результатов.

В предшествующих статьях мы указывали, что углеводы, жиры и белки могут использоваться клетками для синтеза большого количества аденозинтрифосфата, который является источником энергии практически для всех клеточных функций. По этой причине АТФ можно считать «энергетической валютой» процессов метаболизма клеток, которые могут осуществляться только посредством АТФ (или схожего вещества, отличающегося от АТФ нуклеотидом, - гуанозинтрнфосфага). Информация о свойствах АТФ приведена в главе 2.

Особенностью АТФ , делающей его чрезвычайно важным в процессах энергообеспечения, является выделение большого количества свободной энергии (около 7300 калории, или 7,3 Ккал на 1 моль в стандартных условиях, или более 12000 калорий в физиологических условиях), приходящейся на каждую из двух макроэргических фосфатных связей. Количество энергии, выделяемой при распаде каждой макроэргической связи АТФ, достаточно для обеспечения каждого этапа любой химической реакции, которая осуществляется в организме. Некоторые химические реакции, для которых требуется энергия АТФ, используют всего лишь несколько сотен калорий из наличных 12000, а остальная энергия рассеивается в виде тепла.

АТФ образуется при окислении углеводов, жиров и белков. В предыдущих статьях мы говорили о преобразовании энергии, присутствующей в питательных веществах, в энергию АТФ. Если говорить кратко, то АТФ образуется при следующих условиях.

1. Окисление углеводов, главным образом глюкозы, и окисление других Сахаров, но в меньшем количестве, например окисление фруктозы; эти процессы наблюдаются в цитоплазме клеток при анаэробных процессах гликолиза и в митохондриях при аэробном окислении в цикле лимонной кислоты (цикле Кребса).
2. Окисление жирных кислот в митохондриях клеток при бета-окислении.
3. Окисление белков, которые предварительно должны гидролизоваться до аминокислот с последующим расщеплением аминокислот до промежуточных продуктов цикла лимонной кислоты и затем - до ацетил-КоА и углекислого газа.

АТФ - источник энергии для синтеза наиболее важных компонентов клетки. К наиболее важным процессам, требующим энергии АТФ, относится образование пептидных связей между молекулами аминокислот в связи с синтезом белков. В зависимости от вида вступающих в реакцию аминокислот в каждой образующейся пептидной связи заключаются от 500 до 5000 к/моль. Напомним, что расходуется энергия четырех макроэргпческих фосфатных связей для обеспечения каскада реакций, формирующих каждую пептидную связь. Для этого требуется суммарно 48000 калорий, что существенно больше, чем 500-5000 калории, запасаемых в каждой пептидной связи.

Энергия АТФ используется для синтеза глюкозы из молочной кислоты и синтеза жирных кислот из ацетил-КоА. Кроме того, энергия расходуется для образования холестерола, фосфолипидов, гормонов и других веществ организма. Даже мочевина, экскретируемая почками, требует энергии АТФ для ее образования из аммиака. Помня о чрезвычайной токсичности аммиака, можно понять значимость и ценность этой реакции, поддерживающей концентрацию аммиака в организме на очень низком уровне.

АТФ обеспечивает энергией мышечное сокращение. Мышечное сокращение невозможно без энергии АТФ. Миозин - один из важных контрактиль-ных белков мышечного волокна - ведет себя как фермент, вызывающий расщепление АТФ до АДФ, высвобождая энергию, необходимую для мышечного сокращения. При отсутствии мышечного сокращения обычно расщепляется очень небольшое количество АТФ, но этот уровень расхода АТФ может увеличиваться почти в 150 раз (по сравнению с покоем) в течение короткого периода максимальной активности (механизм, с помощью которого энергия АТФ используется для обеспечения мышечного сокращения).

АТФ обеспечивает энергией активный транспорт через мембраны. Активный транспорт большинства электролитов и веществ, таких как глюкоза, аминокислоты и ацетоуксусная кислота, может осуществляться против электрохимического градиента, даже если естественная диффузия должна осуществляться по электрохимическому градиенту. Противодействие ему требует затрат энергии, которую обеспечивает АТФ.

АТР обеспечивает энергией процессы секреции. По тем же правилам, что и всасывание веществ против градиента концентрации, осуществляются процессы секреции в железах, поскольку для концентрирования веществ также необходима энергия.

АТФ обеспечивает энергией проведение возбуждения по нервам. Энергия, используемая для проведения нервного импульса, является производной потенциальной энергии, запасенной в виде разницы концентраций ионов по обе стороны мембраны нервного волокна. Так, высокая концентрация ионов калия внутри волокна и низкая концентрация снаружи представляют собой разновидность способа запасания энергии. Высокая концентрация ионов натрия на наружной поверхности мембраны и низкая концентрация внутри представляют другой пример способа запасания энергии. Энергия, необходимая для проведения каждого потенциала действия вдоль мембраны волокна, является производной запасенной энергии, когда небольшое количество калия выходит из клетки, а поток ионов натрия устремляется в клетку.

Однако система активного транспорта, обеспечиваемая энергией АТФ , возвращает переместившиеся ионы в исходное положение относительно мембраны волокна.