Момент инерции твердого тела. Момент инерции математической точки, тело относительно неподвижной оси(от чего зависить) Момент инерции относительно произвольной оси формула

Момент инерции характеристика инерциальных свойств при вращательном движении. Характеризует распределение массы относительно оси вращения.

– это точки

(это не «зе» английская, а знак такой).

Осевые моменты инерции некоторых тел:

Шар – , ось сплошного цилиндра , ось полого цилиндра - , прямой тонкий стержень - .

Теорема Штейнера – Для того, чтобы найти момент инерции относительно произвольной оси нужно сложить момент инерции этого телаотносительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела на квадрат расстояния между осями.

Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Момент силы определяет скорость изменения момента импульса.

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведенного из точ­ки О в точку А приложения силы, на силу F :

Здесь М - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

где a- угол между r и F; r sina = l - кратчайшее расстояние между линией действия силы и точкой О - плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина M z , равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z. Значение момента М z не зависит от выбора положения точки О на оси z.

(18.3)

Уравнение (18.3) представляет собойуравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Закон сохранения момента импульса.

В замкнутых системах моментов импульса отдельных частей с течением времени не изменяются.

(над всеми L нужен вектор «стрелка»).

В замкнутой системе момент внешних сил

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω 1 . Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω 2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.


Похожая информация:

  1. Cатический момент сечения относительно оси, проходящей через центр тяжести сечения будет
  2. В зависимости от места крепления ремней безопасности и положения тела рабочего в момент нагрузки, различные предохранительные пояса имеют различные преимущества.

МОМЕНТОМ ИНЕРЦИИ I тела относительно точки, оси или плоскости называется сумма произведений массы точек тела m i , на квадраты их расстояний r i до точки, оси или плоскости:

Момент инерции тела относительно оси является мерой инерции тела во вращательном движении вокруг этой оси.

Момент инерции тела может быть также выражен через массу М тела и его радиус инерции r:

МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ОСЕЙ, ПЛОСКОСТЕЙ И НАЧАЛА ДЕКАРТОВЫХ КООРДИНАТ.

Момент инерции относительно начала координат (полярный момент инерции):

СВЯЗЬ МЕЖДУ ОСЕВЫМИ, ПЛОСКОСТНЫМИ И ПОЛЯРНЫМ МОМЕНТАМИ ИНЕРЦИИ:

Значения осевых моментов инерции некоторых геометрических тел приведены в табл. 1.

Таблица 1. Момент инерции некоторых тел
Фигура или тело

При с→0 получается прямоугольная пластина

ИЗМЕНЕНИЕ МОМЕНТОВ ИНЕРЦИИ ПРИ ПЕРЕМЕНЕ ОСЕЙ

Момент инерции I u 1 относительно оси u 1 , параллельной данной оси u (рис. 1):

где I u - момент инерции тела относительно оси u; l(l 1) - расстояние от оси u (от оси u 1) до параллельной им оси u с, проходящей через центр масс тела; а - расстояние между осями u и u 1 .

Рисунок 1.

Если ось u центральная (l=0), то

т. е. для любой группы параллельных осей момент инерции относительно центральной оси наименьший.

Момент инерции I u относительно оси u, составляющей углы α, β, γ с осями декартовых координат х, у, z (рис. 2):

Рисунок 2.

Оси х, у, z главные, если

Момент инерции относительно оси u, составляющей углы α, β, γ c главными осями инерции х, у, z:

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНЫХ МОМЕНТОВ ИНЕРЦИИ ПРИ ПАРАЛЛЕЛЬНОМ ПЕРЕНОСЕ ОСЕЙ:

где - центробежный момент инерции относительно центральных осей х с, y с, параллельных осям х, у; М - масса тела; x с, y с - координаты центра масс в системе осей х, у.

ИЗМЕНЕНИЕ ЦЕНТРОБЕЖНОГО МОМЕНТА ИНЕРЦИИ ПРИ ПОВОРОТЕ ОСЕЙ x, y ВОКРУГ ОСИ z НА УГОЛ α В ПОЛОЖЕНИЕ x 1 y 1 (рис. 3):

Рисунок 3.

ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГЛАВНЫХ ОСЕЙ ИНЕРЦИИ. Ось материальной симметрии тела - главная ось инерции тела.

Если плоскость xОz является плоскостью материальной симметрии тела, то любая из осей y - главная ось инерции тела.

Если положение одной из главных осей z гл известно, то положение двух других осей x гл и y гл определяется поворотом осей х и у вокруг оси z гл на угол φ (рис. 3):

ЭЛЛИПСОИД И ПАРАЛЛЕЛЕПИПЕД ИНЕРЦИИ. Эллипсоидом инерции называется эллипсоид, оси симметрии которого совпадают с главными центральными осями тела x гл, y гл, z гл, а полуоси а х, а у, а z равны соответственно:

где r уО z , r х Oz , r xOy - радиусы инерции тела относительно главных плоскостей инерции.

Параллелепипедом инерции называется параллелепипед, описанный вокруг эллипсоида инерции и имеющий с ним общие оси симметрии (рис. 4).

Рисунок 4.

РЕДУЦИРОВАНИЕ (ЗАМЕНА С ЦЕЛЬЮ УПРОЩЕНИЯ РАСЧЕТА) ТВЕРДОГО ТЕЛА СОСРЕДОТОЧЕННЫМИ МАССАМИ . При вычислении осевых, плоскостных, центробежных и полярных моментов инерции тело массой М можно редуцировать восемью сосредоточенными массами М/8, расположенными в вершинах параллелепипеда инерции. Моменты инерции относительно любых осей, плоскостей, полюсов вычисляются по координатам вершин параллелепипеда инерции x i , y i , z i (i=1, 2, ..., 8) по формулам:

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ

1. Определение моментов инерции тел вращения с использованием дифференциального уравнения вращения - см. формулы ("Вращательное движение твердого тела") .

Исследуемое тело закрепляется на горизонтальной оси х, совпадающей с его осью симметрии, и приводится во вращение вокруг нее с помощью груза Р, прикрепленного к гибкой нити, навернутой на исследуемое тело (рис. 5), при этом замеряется время t опускания груза на высоту h. Для исключения влияния трения в точках закрепления тела на оси х опыт производится несколько раз при разных значениях веса груза Р.

Рисунок 5.

При двух опытах с грузами Р 1 и Р 2

2. Экспериментальное определение моментов инерции тел посредством изучения колебаний физического маятника (см. 2.8.3) .

Исследуемое тело закрепляют на горизонтальной оси х (нецентральной) и замеряют, период малых колебаний около этой оси Т. Момент инерции относительно оси х определится по формуле

где Р - вес тела; l 0 - расстояние от оси вращения до центра масс С тела.

Введенные формулами (3.26), (3.27) величины оказываются существенно необходимыми при изучении динамики вращательных движений твердого тела или системы тел. Эти характеристики инерции зависят как от положения начала координат, так и от направлений выбранных коор­динатных осей. Однако в данной точке тела шесть величин вместе с суммарной массой М пол­ностью определяют его инерцию. Иначе говоря, зная эти ве­личины, можно найти момент инерции относительно оси про­извольного направления и центробежный момент инерции для пары новых (повернутых) осей, а также, при известной геометрии тела, перейти к инерционным характеристикам, определенным для другого начала координат. Пусть требуется найти момент инерции относительного заданного направления (оси ξ ), характеризуемого ортом . Моментом инерции системы материальных точек относи­тельно оси называется сумма произведений масс этих точек на квадраты их расстояний до оси

Легко сообразить, что квадрат расстояния h, , можно подсчи­тать по формуле (рис. 53)

(3.28)

Запишем полученное выражение (3.29) иначе

Мы изменили порядок сомножителей во втором скалярном произведении и отбросили скобки; первое делать можно, а второе? При этом появилась новая величина , в которой два вектора перемножаются, но не скалярно и не векторно, а каким-то новым способом; такое умножение на­зываетсядиадным (или тензорным),а само произведение - диадой, которая представляет собой тензор второго ранга. Аналитическое определение тензора состоит в следующем: совокупность Зn величин (в трехмерном пространстве), преобразующихся при повороте координатной системы как произведения n координат, называется тензором n-го ранга. По этому определению диада будет тензором 2-го ранга, вектор -тензором 1-го ранга, а скалярная величина - тензором нулевого ранга. Очевидно, что диада не изменится при перестановке ее сомножителей - это симметричная диада. Более общий случай получим, перемножая два разных вектора, например и ; диада уже не будет симметричнойи переставлять сомножители у нее нельзя:

Так как векторы и можно представить в виде

то диада может быть записана в виде суммы девяти сла­гаемых

(3.30)

Здесь ….. элементарные диады, а коэффици­енты при них называются составляющими или компонентами тензора. Тензор второго ранга (диаду) можно записать также в виде квадратной матрицы. Так, для тензора (3.30)

(3.31)

Хотя развернутый вид (3.30) тензора и не имеет таблич­ного вида (3.31), однако положение каждой составляющей в таб­лице устанавливается сразу по ее множителю - элементар­ной диаде: левый орт указывает строку, а правый орт - стол­бец, орты соответствуют положению данной составляющей в матрице (3.31). Теперь легко понять неравенство ; пе­рестановка сомножителей в диаде означает замену строк столбцами (и наоборот) в матрице (3.31), а тензор будет транспонированным по отношению к первоначальному тен­зору .Из теории матриц известно, что квадратную матрицу (3.31) можно умножить справа на вектор-столбец или слева на вектор-строку. Запись тензора в форме (3.30) позволяет эти операции свести к скалярному умножению ортов. Тензор второго ранга можно умножить скалярно как справа, так и слева на вектор а ; при этом результат будет различным, так как при правом умножении тензора на вектор будут по­являться скалярные произведения правых ортов элементар­ных диад на орты вектора, а при левом умножении вектора на тензор в скалярных произведениях будут участвовать левые орты элементарных диад. В результате останутся орты элементарных диад, которые не участвовали в скаляр­ных произведениях, поэтому скалярное произведение тензора и вектора будет векторной величиной. Легко сообразить, что , где означает транспонированный тензор. В случае сим­метричного тензора транспонированный тензор равен перво­начальному и разница между правым и левым произведени­ями исчезает. В нашем случае симметричный тензор и его разверну­тое выражение типа (3.29) оказывается проще:

Если тензор (второго ранга) умножать скалярно на век­торы и слева, и справа, то участвовать в скалярных произве­дениях будут как левые, так и правые орты элементарных диад, и в результате получится скалярная величина. Именно это мы имеем в формуле (3.29). Записывая эту формулу в виде

где тензор представлен выше в виде (3.32), сразу понимаем, что в результате двойного скалярного перемножения в (3.33) исчезают те слагаемые, в которых встречаются произведе­ния (скалярные) разных ортов. Остающиеся слагаемые легко написать сразу; это будут те же компоненты тензора , что и представленные в формуле (3.32), только орты в этой фор­муле следует заменить на соответствующие проекции вектора . Тогда получим

Сравнивая результат (3.34) с формулой (3.38а), убеждаемся и законности опускания скобок в формуле (3.29). Простейшим тензором второго ранга будет единичный тензор:

(3.35)

Нетрудно сообразить, что диагональные элементы мат­рицы, соответствующей тензору (3.35), будут единицами, а остальные, недиагональные - нулями. Название «единич­ный тензор» совершенно оправдано, так как, умножая на него любой вектор (справа или слева - это безразлично), мы опять получим вектор :

Это свойство единичного тензора приводит к следую­щему интересному соотношению:

(3.36)

Соотношения (3.36) и (3.29) позволяют написать формулу (3.28) В ином виде

= (3.38)

Величина

= , (3.39)

вошедшая в выражение для (формула 3.38), представляет собой тензор инерции твердого тела в точке О . Вводя этот тензор, переписываем формулу (3.38) для момента инерции относи­тельно оси , заданной направлением орта , в очень про­стом виде

Пусть имеется твердое тело. Выберем некоторую прямую ОО (рис.6.1), которую будем называть осью (прямая OO может быть и вне тела). Разобьем тело на элементарные участки (материальные точки) массами
, находящиеся от оси на расстоянии
соответственно.

Моментом инерции материальной точки относительно оси (OO) называется произведение массы материальной точки на квадрат ее расстояния до этой оси:


. (6.1)

Моментом инерции (МИ) тела относительно оси (OO) называется сумма произведений масс элементарных участков тела на квадрат их расстояния до оси:

. (6.2)

Как видно момент инерции тела есть величина аддитивная – момент инерции всего тела относительно некоторой оси равен сумме моментов инерции отдельных его частей относительно той же оси.

В данном случае

.

Измеряется момент инерции в кгм 2 . Так как

, (6.3)

где  – плотность вещества,
– объемi - го участка, то

,

или, переходя к бесконечно малым элементам,

. (6.4)

Формулу (6.4) удобно использовать для вычисления МИ однородных тел правильной формы относительно оси симметрии, проходящей через центр масс тела. Например, для МИ цилиндра относительно оси, проходящей через центр масс параллельно образующей, эта формула дает

,

где т - масса; R - радиус цилиндра.

Большую помощь при вычислении МИ тел относительно некоторых осей оказывает теорема Штейнера: МИ тела I относительно любой оси равен сумме МИ этого тела I c относительно оси, проходящей через центр масс тела и параллельной данной, и произведения массы тела на квадрат расстояния d между указанными осями:

. (6.5)

Момент силы относительно оси

Пусть на тело действует сила F . Примем для простоты, что сила F лежит в плоскости, перпендикулярной некоторой прямой ОО (рис.6.2,а ), которую назовем осью (например, это ось вращения тела). На рис. 6.2,а А - точка приложения силы F ,
- точка пересечения оси с плоскостью, в которой лежит сила;r - радиус-вектор, определяющий положение точки А относительно точки О "; O "B = b - плечо силы. Плечом силы относительно оси называется наименьшее расстояние от оси до прямой, на которой лежит вектор силы F (длина перпендикуляра, проведенного из точки к этой прямой).

Моментом силы относительно оси называется векторная величина, определяемая равенством

. (6.6)

Модуль этого вектора . Иногда, поэтому говорят, что момент силы относительно оси – это произведение силы на ее плечо.

Если сила F направлена произвольно, то ее можно разложить на две составляющие; и(рис.6.2,б ), т.е.
+, где- составляющая, направленная параллельно оси ОО, алежит в плоскости, перпендикулярной оси. В этом случае под моментом силыF относительно оси OO понимают вектор

. (6.7)

В соответствии с выражениями (6.6) и (6.7) вектор М направлен вдоль оси (см. рис.6.2, а ,б ).

Момент импульса тела относительно оси вращения

Пусть тело вращается вокруг некоторой оси ОО с угловой скоростью
. Разобьем это тело мысленно на элементарные участки с массами
, которые находятся от оси соответственно на расстояниях
и вращаются по окружностям, имея линейные скорости
Известно, что величина равная
- есть импульсi -участка. Моментом импульса i -участка (материальной точки) относительно оси вращения называется вектор (точнее псевдовектор)

, (6.8)

где r i – радиус-вектор, определяющий положение i - участка относительно оси.

Моментом импульса всего тела относительно оси вращения называют вектор

(6.9)

модуль которого
.

В соответствии с выражениями (6.8) и (6.9) векторы
инаправлены по оси вращения (рис.6.3). Легко показать, что момент импульса тела L относительно оси вращения и момент инерции I этого тела относительно той же оси связаны соотношением

. (6.10)

1.10. УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Твердое тело как система материальных точек. Движение центра инерции твердого тела. Кинетическая энергия вращающе гося тела. Понятие момента инерции относительно неподвижной оси. Теорема Штейнера. Моменты инерции некоторых простейших тел. Уравнение динамики вращательного движения относительно неподвижной оси.

Движение твердого тела в общем случае определяется двумя векторными уравнениями. Одно из них - уравнение движения центра масс (4.11), другое-уравнение моментов в С -системе (6.24):

(10 . 1 )

Зная законы действующих внешних сил, точки их приложения и начальные условия, можно с помощью этих уравнений найти как скорость, так и положение каждой точки твердого тела в любой момент времени, т. е. полностью решить задачу о движении тела. Однако, несмотря на кажущуюся простоту уравнений (10.1), решение их в общем случае представляет собой весьма трудную задачу. Это прежде всего обусловлено тем обстоятельством, что связь между собственным моментом импульса и скоростями отдельных точек твердого тела в С -системе оказывается сложной, за исключением немногих частных случаев. Мы не будем рассматривать эту задачу в общем виде (она решается в курсе теоретической механики) и ограничимся в дальнейшем только отдельными частными случаями.

Если перенести силы вдоль направления их действия, то ясно, что не изменятся ни их результирующая , ни их суммарный момент . При этом уравнения (10.1) тоже не изменятся, а следовательно не изменится и движение твердого тела. Поэтому точки приложения внешних сил можно переносить вдоль направления действия сил - удобный прием решения задач, которым постоянно пользуются.

Рассмотрим теперь понятие равнодействующей силы. В тех случаях, когда суммарный момент всех внешних сил оказывается перпендикулярным результирующей силе, т. е. , все внешние силы могут быть сведены к одной силе , действующей вдоль определенной прямой. В самом деле, если относительно некоторой точки О суммарный момент , то всегда можно найти такой вектор (рис. 10.1), что при заданных и

При этом выбор неоднозначен: прибавление к нему любого вектора ,

параллельного , не изменит последнего равенства. А это означает, что данное равенство определяет не точку "приложения" силы , а линию ее действия. Зная модули M и F соответствующих векторов, можно найти плечо l силы (рис.6.14): .

Таким образом, если , систему сил, действующих на отдельные точки твердого тела, можно заменить одной равнодействующей силой - силой, которая равна результирующей и создает момент, равный суммарному моменту всех внешних сил.

Таким случаем является действие однородного силового поля, например поля тяжести, в котором действующая на каждую частицу сила имеет вид . В этом случае суммарный момент сил тяжести относительно любой точки О равен

Стоящая в круглых скобках сумма, равна где масса тела радиус-вектор его центра масс относительно точки O . Поэтому

Это означает, что равнодействующая сил тяжести проходит через центр масс тела. Обычно говорят, что равнодействующая сил тяжести приложена к центру масс тела или к его центру тяжести. Момент этой силы относительно центра масс тела равен нулю.

Теперь перейдем к рассмотрению частных случаев движения твердого тела.

Вращение вокруг неподвижной оси.

Рассмотрим вращение твердого тела вокруг неподвижной оси. Найдем выражение для момента импульса твердого тела относительно оси 00" (рис. 6.15). Момент импульса частицы можно записать в виде

где и - масса и расстояние от оси вращения частицы твердого тела, - его угловая скорость. Обозначив величину, стоящую в круглых скобках, через I, получим

(10 .2)

Моментом инерции материальной точки относительно оси вращения называется произведение массы этой точки на квадрат кратчайшего расстояния от оси.

Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Момент инерции твердого тела зависит от распределения масс относительно интересующей нас оси и является величиной аддитивной. Вычисление момента инерции тела проводится по формуле

где dm и dV - масса и объем элемента тела, находящегося на расстоянии от интересующей нас оси z, - плотность тела в данной точке.

Моменты инерции некоторых однородных твердых тел относительно оси, проходящей через центр масс тела, приведены в следующей таблице (здесь т - масса тела):

Вид твердого тела

Положение оси

Момент инерции

Тонкий стержень длины L

Перпендикулярно стержню

Сплошной цилиндр радиуса R

Совпадает с осью цилиндра

Тонкий диск радиуса R

Совпадает с диаметром диска

Шар радиуса R

Проходит через центр шара

Вычисление момента инерции твердого тела произвольной формы относительно той или иной оси представляет собой, вообще говоря, довольно кропотливую в математическом отношении задачу. Однако в некоторых случаях нахождение момента инерции значительно упрощается, если воспользоваться теоремой Штейнера : момент инерции I относительно произвольной оси z равен моменту инерции относительно оси параллельной данной и проходящей через центр масс С тела, плюс произведение массы т тела нa квадрат расстояния а между осями:

(10 . 4 )

Таким образом, если известен момент инерции то нахождение момента инерции I элементарно. Например, момент инерции тонкого стержня (массы т и длины l ) относительно оси, перпендикулярной стержню и проходящей через его конец, равен

Кинетическая энергия вращательного движения - энергия тела, связанная с его вращением. Получим выражение для кинетической энергии вращающегося твердого тела с неподвижной осью вращения. Учитывая связь скорости частицы вращающегося твердого тела с угловой скоростью запишем

или, более коротко

где - момент инерции тела относительно оси вращения, проходящей через его центр масс, -угловая скорость тела, т - его масса, - скорость центра инерции тела в K-системе отсчета. Таким образом, кинетическая энергия твердого тела при плоском движении складывается из энергии вращения в С-системе и энергии, связанной с движением центра масс .

Запишем основное уравнение динамики вращения твердого тела с неподвижной осью вращения. Это уравнение легко получить, как следствие как следствие уравнения моментов для материальной точки, если продифференцировать (10.2) по времени, тогда

(10 . 7 )

где - суммарный момент всех внешних сил относительно оси вращения, проекция углового ускорения на ось вращения. Из этого уравнения, в частности, видно, что момент инерции I определяет инерционные свойства твердого тела при вращении: при одном и том же значении момента сил тело с большим моментом инерции приобретает меньшее угловое ускорение. Моменты сил относительно оси - величины алгебраические: их знаки зависят как от выбора положительного направления оси z , совпадающей с осью вращения, так и от направления

"вращения" соответствующего момента силы. Например, выбрав положительное направление оси z , как показано на рис. 10.3, мы тем самым задаем и положительное направление отсчета угла - оба эти направления связаны правилом правого винта. Полагают, что если некоторый момент "вращает" в положительном направлении угла, то он считается положительным, и наоборот. А знак суммарного момента в свою очередь определяет знак - проекции вектора углового ускорения на ось z.

Интегрирование уравнения (10.7) с учетом начальных условий -значений угловой скорости и угла и начальный момент времени - позволяет полностью решить задачу о вращении твердого тела вокруг неподвижной оси, т. е. найти зависимость от времени угловой скорости и угла поворота.

Заметим, что уравнение (10.7) справедливо в любой системе отсчета, жестко связанной с осью вращения. Однако если система отсчета неинерциальная, то необходимо помнить, что момент сил включает в себя не только моменты сил взаимодействия с другими телами, но и моменты сил инерции.