Кислотные оксиды реагируют с кислородом. Кислотные оксиды. Они бывают солеобразующими и несолеобразующие

Видеоурок 2: Химические свойства основных оксидов

Лекция: Характерные химические свойства оксидов: основных, амфотерных, кислотных

Оксиды - бинарные соединения (сложные вещества), состоящие из кислорода со степенью окисления -2 и другого элемента.

По своим химическим способностям образовывать соли все оксиды подразделены на две группы:

  • солеобразующие,
  • несолеобразующие.

Солеообразующие в свою очередь подразделены на три группы: основные, ксилотные, амфотерные. К несолеобразующим относятся оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO, оксид кремния(II) SiO.

Основные оксиды - это оксиды, проявляющие основные свойства, образованные щелочными и щелочноземельными металлами в степенях окисления +1,+2, а также переходными металлами в низших степенях окисления.

Данной группе оксидов соответствуют основания: К 2 О – КОН; ВаО – Ва(ОН) 2 ; La 2 O 3 – La(OH) 3 .

Кислотные оксиды - это оксиды, проявляющие кислотные свойства, образованные типичными неметаллами, а также некоторыми переходными металлами в степенях окисления от +4 до +7.

Данной группе оксидов соответствуют кислоты: SO 3 –H 2 SO 4 ; CO 2 – H 2 CO 3 ; SO 2 – H 2 SO 3 и т.д.

Амфотерные оксиды - это оксиды, проявляющие основные и кислотные свойства, образованные переходными металлами в степенях окисления +3,+4. Искл.: ZnO, BeO, SnO, PbO.

Данной группе оксидов соответствуют амфотерные основания: ZnO – Zn(OH) 2 ; Al 2 O 3 – Al(OH) 3 .


Рассмотрим химические свойства оксидов:

Реагент

Основные оксиды


Амфотерные оксиды


Кислотные оксиды


Вода Реагируют. Пример:
CaO + H 2 O → Ca(OH) 2
Не реагируют
Реагируют. Пример:
SO 3 + H 2 O → H 2 SO 4
Кислота Реагируют. Пример:
Fe 2 O 3 + 6HCl → 2FeCl 3 + 3H 2 O
Реагируют. Пример:
ZnO + 2HCl → ZnCl 2 + H 2 O
Не реагируют
Основание Не реагируют Реагируют. Пример:
ZnO + 2NaOH + H 2 O → Na 2
Реагируют. Пример:
2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O
Основный оксид Не реагируют
Реагируют. Пример:
ZnO + CaO → CaZnO 2
Реагируют. Пример:
SiO 2 + CaO → CaSiO 3
Кислотный оксид Реагируют. Пример:
CaO + CO 2 → CaCO 3
Реагируют. Пример:
ZnO + SiO 2 → ZnSiO 3
Не реагируют
Амфотерный оксид Реагируют. Пример:
Li 2 O + Al 2 O 3 → 2LiAlO
Реагируют
Реагируют. Пример:
Al 2 O 3 + 3SO 3 → Al 2 (SO 4) 3

Из приведенной таблицы можно резюмировать следующее :

    Основные оксиды наиболее активных металлов взаимодействуют с водой, образуя сильные основания – щелочи. Основные оксиды менее активных металлов, при обычных условиях с водой не реагируют. С кислотами реагируют всегда и все оксиды данной группы, образуя соли и воду. А с основаниями не реагируют.

    Кислотные оксиды в большинстве своем реагируют с водой. Но не все реагируют в обычных условиях. С основаниями реагирует все оксиды данной группы, образуя соли и воду. С кислотами не реагируют.

    Основные и кислотные оксиды способны реагировать между собой, с последующим образованием соли.

    Амфотерные оксиды обладают основными и кислотными свойствами. Поэтому они реагируют и с кислотами, и с основаниями, образуя соли и воду. Амфотерные оксиды реагируют с кислотными и основными оксидами. Так же взаимодействуют и между собой. Чаще всего, данные химические реакции протекают при нагревании с образованием солей.



Основными называются такие оксиды, которым соответствуют основания. Например, Na 2 O, CaO являются основными оксидами, так как им соответствуют основания NaOH, Ca(OH) 2 .

Получение основных оксидов

  1. Взаимодействие металла с кислородом:

2Mg + O 2 = 2MgO,

2Cu + O 2 = 2CuO.

Этот метод неприменим для щелочных металлов, которые при окислении обычно дают пероксиды и супероксиды, и только литий, сгорая, образует оксид Li 2 O.

2. Обжиг сульфидов:

2CuS + 3O 2 = 2 CuO + 2SO 2 ,

4FeS 2 + 11O 2 = 2 Fe 2 O 3 + 8SO 2 .

Этим методом нельзя получить оксиды щелочных металлов.

3. Разложение нерастворимых оснований (при t):

Сu(OH) 2 = CuO + H 2 O.

4. Разложение солей кислородсодержащих кислот — чаще нитратов и карбонатов (при t):

ВаСО 3 = ВаО + СО 2 ,

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2 ,

4FeSO 4 = 2Fe 2 O 3 + 4SO 2 + O 2 .

Свойства основных оксидов

Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера, в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с оксид-ионами О -2 , поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.

1. Большинство основных оксидов не распадаются при нагревании, исключение составляют оксиды ртути и благородных металлов:

2HgO = 2Hg + O 2 ,

2Ag 2 O = 4Ag + O 2 .

2. Типичные реакции с образованием солей:

3. Оксиды щелочных и щелочноземельных металлов непосредственно реагируют с водой:

Li 2 O + H 2 O = 2LiOH,

CaO + H 2 O = Ca(OH) 2 .

4. Как и все другие типы оксидов, основные оксиды могут вступать в окислительно-восстановительные реакции:

Fe 2 O 3 + 2Al = Al 2 O 3 + 2Fe,

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O,

О 2 .

Оксиды делят:

Номенклатура оксидов.

В настоящее время используют международную номенклатуру, согласно которой любой оксид называется оксидом с указанием римскими цифрами степени окисления элемента: оксид серы (IV) - SO 2 , оксид железа (III) - Fe 2 O 3 , оксид углерода (II) CO и т.д.

Однако до сих пор встречаются и старые названия оксидов :

Получения солеобразующих оксидов.

Основные оксиды - оксиды типичных металлов, им соответствующие гидроксиды , обладающие свойствами оснований.

Кислотные оксиды - оксиды неметаллов или переходных металлов в высоких степенях окисления .

Основные оксиды

Кислотные оксиды

1. Окисление металлов при нагревании в атмосфере воздуха:

1. Окисление неметаллов при нагревании в атмосфере воздуха:

2 Mg + O 2 = 2 MgO,

Этот метод практически неприменим для щелочных металлов, которые обычно образуют пероксиды, а не оксиды.

4 P + 5O 2 = 2P 2 O 5 ,

2. Обжиг сульфидов:

2 CuS + 3 O 2 = 2 CuO + 2 SO 2 ,

Этот метод также неприменим для сульфидов активных металлов, окисляющихся до сульфатов.

2 ZnS + 3 O 2 = 2ZnO + 2SO 2 ,

3. Разложение гидроксидов при температуре:

Cu(OH) 2 = CuO + H 2 O,

Этим способом также нельзя получить оксиды щелочных металлов.

4. Разложение солей кислородосодержащих кислот при температуре:

BaСO 3 = BaO + CO 2 ,

Этот способ хорошо применим для нитратов и карбонатов.

Амфотерные оксиды.

Амфотерные оксиды обладают двойственной природой: они могут взаимодействовать с кислотами и с основаниями (щелочами):

Al 2 O 3 + 6HCl = 2AlCl 3 + 3 H 2 O ,

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na.

Типичные амфотерные оксиды: H 2 O, BeO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 и др.

Свойства оксидов.

Основные оксиды

Кислотные оксиды

1. Разложение при нагревании:

2HgO =2Hg + O 2

Разлагаются только оксиды ртути и благородных металлов, остальные не разлагаются.

2. При нагревании реагируют с кислотными и амфотерными оксидами:

Взаимодействуют с основными оксидами, амфотерными оксидами, гидроксидами:

BaO + SiO 2 = BaSiO 3,

MgO + Al 2 O 3 = Mg(AlO 2) 2,

BaO + SiO 2 = BaSiO 3,

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O,

Реагируют с водой:

K 2 O + H 2 O = 2KOH,

CaO + H 2 O = Ca(OH) 2,

SO 3 + H 2 O = H 2 SO 4,

CO 2 + H 2 O = H 2 CO 3,

Fe 2 O 3 + 2Al = Al 2 O 3 + 2Fe,

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O,

CO 2 + C = 2CO,

2SO 2 + O 2 = 2SO 3.

Амфотерные оксиды (имеющие двойственные свойства) - это в большинстве случаев оксиды металлов, которые обладают небольшой электроотрицательностью. В зависимости от внешних условий проявляют либо кислотные, либо оксидные свойства. Образуются эти оксиды которые обычно проявляют следующие степени окисления: ll, lll, lV.

Примеры амфотерных оксидов: цинка оксид (ZnO), хрома оксид lll (Cr2O3), алюминия оксид (Al2O3), олова оксид ll (SnO), олова оксид lV (SnO2), свинца оксид ll (PbO), свинца оксид lV (PbO2), титана оксид lV (TiO2), марганца оксид lV (MnO2), железа оксид lll (Fe2O3), бериллия оксид (BeO).

Реакции, характерные для амфотерных оксидов:

1. Эти оксиды могут реагировать с сильными кислотами. При этом образуются соли этих же кислот. Реакции такого типа являются проявлением свойств основного типа. Например: ZnO (оксид цинка) + H2SO4 (соляная кислота) → ZnSO4 + H2O (вода).

2. При взаимодействии с сильными щелочами амфотерные оксиды и гидроксиды проявляют При этом двойственность свойств (то есть амфотерность) проявляется в образовании двух солей.

В расплаве при реакции с щелочью образуется соль средняя обычная, например:
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) → Na2ZnO2 (обычная средняя соль) + H2O (вода).
Al2О3 (оксид алюминия) + 2NaOH (гидроксид натрия) = 2NaAlO2 + H2O (вода).
2Al(OH)3 (алюминия гидроксид) + 3SO3 (оксид серы) = Al2(SO4)3 (алюминия сульфат) + 3H2O (вода).

В растворе амфотерные оксиды при реакции с щелочью образуют комплексную соль, например: Al2O3 (алюминия оксид) + 2NaOH (гидроксид натрия)+ 3H2O (вода) + 2Na(Al(OH)4) (комплексная соль тетрагидроксоалюминат натрия).

3. Каждый металл любого амфотерного оксида имеет свое координационное число. Например: для цинка (Zn) - 4, для алюминия (Al) - 4 или 6, для хрома (Cr) - 4 (редко) или 6.

4. Амфотерный оксид не реагирует с водой и не растворяется в ней.

Какие реакции доказывают амфотерность металла?

Условно говоря, амфотерный элемент может проявлять свойства как металлов, так и неметаллов. Подобная характерная особенность присутствует у элементов А-групп: Be (бериллий), Ga (галлий), Ge (германий), Sn (олово), Pb, Sb (сурьма), Bi (висмут) и некоторые другие, а также многие элементы Б-групп - это Cr (хром), Mn (марганец), Fe (железо), Zn (цинк), Cd (кадмий) и другие.

Докажем следующими химическими реакциями амфотерность химического элемента цинка (Zn):

1. Zn(OH)2 + N2O5 (пентаоксид диазота) = Zn(NO3)2 (нитрат цинка) + H2O (вода).
ZnO (оксид цинка) + 2HNO3 = Zn(NO3)2 (нитрат цинка) + H2O (вода).

б) Zn(OH)2 (цинка гидроксид) + Na2O (натрия оксид) = Na2ZnO2 (диоксоцинкат натрия)+ H2O (вода).
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) = Na2ZnO2 (диоксоцинкат натрия) + H2O (вода).

В том случае, если элемент с двойственными свойствами в соединении имеет следующие степени окисления, его двойственные (амфотерные) свойства наиболее заметно проявляются в промежуточной стадии окисления.

Как пример можно привести хром (Cr). Этот элемент имеет следующие степени окисления: 3+, 2+, 6+. В случае +3 основные и кислотные свойства выражаются приблизительно в одинаковой степени, в то время как у Cr +2 преобладают основные свойства, а у Cr +6 - кислотные. Вот реакции, доказывающие данное утверждение:

Cr+2 → CrO (оксид хрома +2), Cr(OH)2 → CrSO4;
Cr+3 → Cr2O3 (оксид хрома +3), Cr(OH)3 (хрома гидроксид) → KCrO2 или же хрома сульфат Cr2(SO4)3;
Cr+6 → CrO3 (оксид хрома +6), H2CrO4 → K2CrO4.

В большинстве случаев амфотерные оксиды химических элементов со степенью окисления +3 существуют в мета-форме. Как пример, можно привести: метагидроксид алюминия (хим. формула AlO(OH) и метагидроксид железа (хим. формула FeO(OH)).

Как получают амфотерные оксиды?

1. Наиболее удобный метод их получения заключается в осаждении из водного раствора с использованием гидрата аммиака, то есть слабого основания. Например:
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный гидрата) = Al(OH)3 (амфотерный оксид) + 3NH4NO3 (реакция выполняется при двадцати градусах тепла).
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный раствор гидрата аммиака) = AlO(OH) (амфотерный оксид) + 3NH4NO3 + H2O (реакция осуществляется при 80 °C)

При этом в обменной реакции этого типа в случае избытка щелочей не будет осаждаться. Это происходит по причине того, что алюминий переходит в анион из-за своих двойственных свойств: Al(OH)3 (алюминия гидроксид) + OH− (избыток щелочей) = − (анион гидроксида алюминия).

Примеры реакций данного типа:
Al(NO3)3 (нитрат алюминия) + 4NaOH(избыток гидроксида натрия) = 3NaNO3 + Na(Al(OH)4).
ZnSO4 (сульфат цинка) + 4NaOH(избыток гидроксида натрия) = Na2SO4 + Na2(Zn(OH)4).

Соли, которые при этом образуются, относятся к Они включают в себя следующие анионы комплексные: (Al(OH)4)− и еще (Zn(OH)4)2−. Вот так называются эти соли: Na(Al(OH)4) - натрия тетрагидроксоалюминат, Na2(Zn(OH)4) - натрия тетрагидроксоцинкат. Продукты взаимодействия алюминиевых или цинковых оксидов с щелочью твердой называются по-другому: NaAlO2 - натрия диоксоалюминат и Na2ZnO2 - натрия диоксоцинкат.

Оксиды - сложные вещества, состоящие из двух элементов, один из которых - атом кислорода в степени окисления -2 .
По способности образовывать соли оксиды делят на солеобразующие и несолеобразующие (СО,SiO,NO,N 2 О). Солеобразующие оксиды, в свою очередь, классифицируют на основные, кислотные и амфотерные .
Основными называются оксиды, которым соответствуют основания, кислотными - оксиды, которым отвечают кислоты. К амфотерным относятся оксиды, проявляющие химические свойства как основных, так и кислотных оксидов.
Основные оксиды образуют только элементы-металлы: щелочные (Li 2 О, Na 2 О, К 2 О, Cs 2 О, Rb 2 О), щелочноземельные (CaO, SrO, BaO, RaO) и магний (MgO), а также металлы d-семейства в степени окисления +1, +2, реже +3(Cu 2 O, CuO, Ag 2 O, СrO, FeO, MnO, СоO, NiO).

Кислотные оксиды образуют как элементы-неметаллы (СО 2 , SO 2 , NO 2 ,Р 2 O 5 , Cl 2 O 7), так и элементы-металлы, степень окисления атома металла должна быть +5 и выше(V 2 O 5 , СrO 3 , Mn 2 O 7 , MnO 3). Амфотерные оксиды образуют только элементы металлы (ZnO, AI 2 O 3 , Fe 2 O 3 , BeO, Cr 2 O 3 , PbO, SnO, MnO 2).

В обычных условиях оксиды могут находиться в трех агрегатных состояниях: все основные и амфотерные оксиды твердые вещества, кислотные оксиды могут быть жидкими (SO 3 ,Сl 2 O7,Mn 2 O7), газообразными (CO 2 , SO 2 , NO 2) и твердыми (P 2 O 5 , SiO 2). Некоторые имеют запах (NO 2 , SO 2), однако большинство оксидов запаха не имеют. Одни оксиды окрашены: бурый газ NO 2 , вишнево-красный CrO 3 , черные CuO и Ag 2 O, красные Cu 2 O и HgO, коричневый Fe 2 O 3 , белые SiO 2 , Аl 2 O 3 и ZnO, другие - бесцветные (H 2 O, CO 2 , SO 2).

Большинство оксидов устойчивы при нагревании; легко разлагаются при нагревании оксиды ртути и серебра. Основные и амфотерные оксиды имеют , для них характерна кристаллическая решетка ионного типа. Большинство кислотных оксидов вещества (одно из немногих исключений - оксид кремния (IV), имеющий атомную кристаллическую решетку).

Al 2 O 3 +6KOH+3H 2 O=2K 3 - гексагидроксоалюминат калия;
ZnO+2NaOH+H 2 O=Na 2 - тетрагидроксоцинкат натрия;