Кинематика тела брошенного под углом к горизонту. Движение тела, брошенного под углом к горизонту. Максимальная высота подъема тела


Обновлено:

На нескольких примерах (которые я изначально решал, как обычно, на otvet.mail.ru) рассмотрим класс задач элементарной баллистики: полет тела, запущенного под углом к горизонту с некоторой начальной скоростью, без учета сопротивления воздуха и кривизны земной поверхности (то есть направление вектора ускорения свободного падения g считаем неизменным).

Задача 1. Дальность полета тела равна высоте его полета над поверхностью Земли. Под каким углом брошено тело? (в некоторых источниках почему-то приведен неправильный ответ - 63 градуса).

Обозначим время полета как 2*t (тогда в течение t тело поднимается вверх, и в течение следующего промежутка t - спускается). Пусть горизонтальная составляющая скорости V1, вертикальная - V2. Тогда дальность полета S = V1*2*t. Высота полета H = g*t*t/2 = V2*t/2. Приравниваем
S = H
V1*2*t = V2*t/2
V2/V1 = 4
Отношение вертикальной и горизонтальной скоростей есть тангенс искомого угла α, откуда α = arctan(4) = 76 градусов.

Задача 2. Тело брошено с поверхности Земли со скоростью V0 под углом α к горизонту. Найти радиус кривизны траектории тела: а) в начале движения; б) в верхней точке траектории.

В обоих случая источник криволинейности движения - это гравитация, то есть ускорение свободного падения g, направленное вертикально вниз. Все что здесь требуется - найти проекцию g, перпендикулярную текущей скорости V, и приравнять ее центростремительному ускорению V^2/R, где R - искомый радиус кривизны.

Как видно из рисунка, для начала движения мы можем записать
gn = g*cos(a) = V0^2/R
откуда искомый радиус R = V0^2/(g*cos(a))

Для верхней точки траектории (см. рисунок) имеем
g = (V0*cos(a))^2/R
откуда R = (V0*cos(a))^2/g

Задача 3. (вариация на тему) Снаряд двигался горизонтально на высоте h и разорвался на два одинаковых осколка, один из которых упал на землю через время t1 после взрыва. Через какое время после падения первого осколка упадёт второй?

Какую бы вертикальную скорость V ни приобрел первый осколок, второй приобретет ту же по модулю вертикальную скорость, но направленную в противоположную сторону (это следует из одинаковой массы осколков и сохранения импульса). Кроме того, V направлена вниз, поскольку иначе второй осколок прилетит на землю ДО первого.

h = V*t1+g*t1^2/2
V = (h-g*t1^2/2)/t1
Второй полетит вверх, потеряет вертикальную скорость через время V/g, и затем через такое же время долетит вниз до начальной высоты h, и время t2 его задержки относительно первого осколка (не время полета от момента взрыва) составит
t2 = 2*(V/g) = 2h/(g*t1)-t1

дополнено 2018-06-03

Цитата:
Камень брошен со скоростью 10 м/с под углом 60° к горизонту. Определить тангенциальное и нормальное ускорение тела спустя 1,0 с после начала движения, радиус кривизны траектории в этот момент времени, длительность и дальность полета. Какой угол образует вектор полного ускорения с вектором скорости при t = 1,0 с

Начальная горизонтальная скорость Vг = V*cos(60°) = 10*0.5 = 5 м/с, и она не меняется в течение всего полёта. Начальная вертикальная скорость Vв = V*sin(60°) = 8.66 м/с. Время полёта до максимально высокой точки t1 = Vв/g = 8.66/9.8 = 0.884 сек, а значит длительность всего полёта 2*t1 = 1.767 с. За это время тело пролетит по горизонтали Vг*2*t1 = 8.84 м (дальность полёта).

Через 1 секунду вертикальная скорость составит 8.66 - 9.8*1 = -1.14 м/с (направлена вниз). Значит угол скорости к горизонту составит arctan(1.14/5) = 12.8° (вниз). Поскольку полное ускорение здесь единственное и неизменное (это ускорение свободного падения g , направленное вертикально вниз), то угол между скоростью тела и g в этот момент времени составит 90-12.8 = 77.2°.

Тангенциальное ускорение - это проекция g на направление вектора скорости, а значит составляет g*sin(12.8) = 2.2 м/с2. Нормальное ускорение - это перпендикулярная к вектору скорости проекция g , она равна g*cos(12.8) = 9.56 м/с2. И поскольку последнее связано со скоростью и радиусом кривизны выражением V^2/R, то имеем 9.56 = (5*5 + 1.14*1.14)/R, откуда искомый радиус R = 2.75 м.

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря - падение в пустоте. Конечно, отсутствие сопротивления воздуха - это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения - ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля - не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения - на полюсах (≈ 9 , 83 м с 2) , а самое малое - на экваторе (≈ 9 , 78 м с 2) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение - прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h:

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = - g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Первый график - это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м.

Второй график - движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с. Максимальная высота подъема h = 5 м. Время подъема и время падения t п = 1 с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения - v 0 y . Движение вдоль оси O X - равномерное и прямолинейное, с начальной скоростью v 0 x .

Условия для движения вдоль оси О Х:

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y:

y 0 = 0 ; v 0 y = v 0 sin α ; a y = - g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука - баллистика.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Когда изучают механическое движение в физике, то после ознакомления с равномерным и равноускоренным перемещением объектов, переходят к рассмотрению движения тела под углом к горизонту. В данной статье изучим подробнее этот вопрос.

Что собой представляет движение тела под углом к горизонту?

Этот тип перемещения объектов возникает, когда человек бросает камень в воздух, пушка совершает выстрел ядром, или вратарь выбивает от ворот футбольный мяч. Все подобные случаи рассматриваются наукой баллистикой.

Отмеченный вид перемещения объектов в воздухе происходит по параболической траектории. В общем случае проведение соответствующих расчетов является делом не простым, поскольку необходимо учитывать сопротивление воздуха, вращение тела во время полета, вращение Земли вокруг оси и некоторые другие факторы.

В данной статье мы не будем учитывать все эти факторы, а рассмотрим вопрос с чисто теоретической точки зрения. Тем не менее, полученные формулы достаточно хорошо описывают траектории тел, перемещающихся на небольшие расстояния.

Получение формул для рассматриваемого вида движения

Выведем тела к горизонту под углом. При этом будем учитывать только одну-единственную силу, действующую на летящий объект - силу тяжести. Поскольку она действует вертикально вниз (параллельно оси y и против нее), то, рассматривая горизонтальную и вертикальную составляющие движения, можно сказать, что первая будет иметь характер равномерного прямолинейного перемещения. А вторая - равнозамедленного (равноускоренного) прямолинейного перемещения с ускорением g. То есть, компоненты скорости через значение v 0 (начальная скорость) и θ (угол направления движения тела) запишутся так:

v x = v 0 *cos(θ)

v y = v 0 *sin(θ)-g*t

Первая формула (для v x) справедлива всегда. Что касается второй, то тут нужно отметить один нюанс: знак минус перед произведением g*t ставится только в том случае, если вертикальная компонента v 0 *sin(θ) направлена вверх. В большинстве случаев так и происходит, однако, если бросить тело с высоты, направив его вниз, тогда в выражении для v y следует поставить знак "+" перед g*t.

Проинтегрировав формулы для компонент скорости по времени, и учитывая начальную высоту h полета тела, получаем уравнения для координат:

x = v 0 *cos(θ)*t

y = h+v 0 *sin(θ)*t-g*t 2 /2

Вычисление дальности полета

При рассмотрении в физике движения тела к горизонту под углом, полезным для практического применения, оказывается расчет дальности полета. Определим ее.

Поскольку это перемещение представляет собой равномерное движения без ускорения, то достаточно подставить в него время полета и получить необходимый результат. Дальность полета определяется исключительно перемещением вдоль оси x (параллельно горизонту).

Время нахождения тела в воздухе можно вычислить, приравняв к нулю координату y. Имеем:

0 = h+v 0 *sin(θ)*t-g*t 2 /2

Это квадратное уравнение решаем через дискриминант, получаем:

D = b 2 - 4*a*c = v 0 2 *sin 2 (θ) - 4*(-g/2)*h = v 0 2 *sin 2 (θ) + 2*g*h,

t = (-b±√D)/(2*a) = (-v 0 *sin(θ)±√(v 0 2 *sin 2 (θ) + 2*g*h))/(-2*g/2) =

= (v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

В последнем выражении один корень со знаком минуса отброшен, в виду его незначительного физического значения. Подставив время полета t в выражение для x, получаем дальность полета l:

l = x = v 0 *cos(θ)*(v 0 *sin(θ)+√(v 0 2 *sin 2 (θ) + 2*g*h))/g.

Проще всего это выражение проанализировать, если начальная высота равна нулю (h=0), тогда получим простую формулу:

l = v 0 2 *sin(2*θ)/g

Это выражение свидетельствует, что максимальную дальность полета можно получить, если тело бросить под углом 45 o (sin(2*45 o) = м1).

Максимальная высота подъема тела

Помимо дальности полета, также полезно найти высоту над землей, на которую может подняться тело. Поскольку этот тип движения описывается параболой, ветви которой направлены вниз, то максимальная высота подъема является ее экстремумом. Последний рассчитывается путем решения уравнения для производной по t для y:

dy/dt = d(h+v 0 *sin(θ)*t-g*t 2 /2)/dt = v 0 *sin(θ)-gt=0 =>

=> t = v 0 *sin(θ)/g.

Подставляем это время в уравнение для y, получаем:

y = h+v 0 *sin(θ)*v 0 *sin(θ)/g-g*(v 0 *sin(θ)/g) 2 /2 = h + v 0 2 *sin 2 (θ)/(2*g).

Это выражение свидетельствует, что на максимальную высоту тело поднимется, если его бросить вертикально вверх (sin 2 (90 o) = 1).

Кинематика - это просто!


После броска, в полете, на тело действуют сила тяжести и сила сопротивления воздуха .
Если движение тела происходит на малых скоростях, то при расчете силу сопротивления воздуха обычно не учитывают.
Итак, можно считать, что на тело действует только сила тяжести, значит движение брошенного тела является свободным падением .
Если это свободное падение, то ускорение брошенного тела равно ускорению свободного падения g .
На малых высотах относительно поверхности Земли сила тяжести Fт практически не меняется, поэтому тело движется с постоянным ускорением.

Итак, движение тела, брошенного под углом к горизонту является вариантом свободного падения, т.е. движением с постоянным ускорением и криволинейной траекторией (т.к. векторы скорости и ускорения не совпадают по направлению).

Формулы этого движения в векторном виде: Для расчета движения тела выбирают прямоугольную систему координат XOY, т.к. траекторией движения тела является парабола, лежащая в плоскости, проходящей через векторы Fт и Vo .
За начало координат обычно выбирают точку начала движения брошенного тела.


В любой момент времени изменение скорости движения тела по направлению совпадает с ускорением.

Вектор скорости тела в любой точке траектории можно разложить на 2 составляющих: вектор V x и вектор V y .
В любой момент времени скорость тела будет определяться, как геометрическая сумма этих векторов:

Согласно рисунку, проекции вектора скорости на координатные оси OX и OY выглядят так:


Расчет скорости тела в любой момент времени:

Расчет перемещения тела в любой момент времени:

Каждой точке траектории движения тела соответствуют координаты X и Y:


Расчетные формулы для координат брошенного тела в любой момент времени:


Из уравнения движения можно вывести формулы для расчета максимальной дальности полета L:

и максимальной высоты полета Н:


P.S.
1. При равных по величине начальных скоростях Vo дальность полета:
- возрастает, если начальный угол бросания увеличивать от 0 o до 45 o ,
- убывает, если начальный угол бросания увеличивать от 45 o до 90 o .

2. При равных начальных углах бросания дальность полета L возрастает с увеличением начальной скорости Vo.

3. Частным случаем движения тела, брошенного под углом к горизонту, является движение тела, брошенного горизонтально , при этом начальный угол бросания равен нулю.

Движение тела, брошенного под углом к горизонту

Основные формулы криволинейного движения

1 . Скорость движения материальной точки

\(\vec V=\frac{d\vec r}{dt}\) ,

где \(\vec r\) - радиус-вектор точки.

2 . Ускорение материальной точки

\(\vec a=\frac{d\vec V}{dt}=\frac{d^2\vec r}{dt^2}\) ,

\(a=\sqrt{a^2_{\tau}+a^2_n}\) ,

где \(a_{\tau}\) - тангенциальное ускорение, \(a_n\) - нормальное ускорение.

3 . Тангенциальное ускорение

\(a_{\tau}=\frac{dV}{dt}=\frac{d^2s}{dt^2}\)

4 . Нормальное ускорение

\(a_n=\frac{V^2}{R}\) ,

где \(R\) - радиус кривизны траектории.

5 . для равнопеременного движения

\(S=V_0t+\frac{at^2}{2}\)

\(V=V_0+at\)

Выразив из второго равенства \(t\) и подставив в первое, получим полезную формулу

\(2aS=V^2-V_0^2\)

Примеры решения задач

В задачах о движении тела в поле силы тяжести будем полагать \(a=g=9.8\) м/с 2 .

Задача 1.

Снаряд вылетает из орудия с начальной скоростью 490 м/с под углом 30 0 к горизонту. Найти высоту, дальность и время полета снаряда, не учитывая его вращение и сопротивление воздуха.

Решение задачи

Найти: \(h, S, t\)

\(V_0=490\) м/с

\(\alpha=30^0\)

Свяжем ИСО с орудием.

Составляющие скорости по осям Ox и Oy в начальный момент времени равны:

\(V_{0x}=V_0\cos\alpha\) - остается неизменной во все время полета снаряда,

\(V_{0y}=V_0\sin\alpha\) - меняется согласно уравнению равнопеременного движения

\(V_y=V_0\sin\alpha-gt\) .

В наивысшей точке подъема \(V_y=V_0\sin\alpha-gt_1=0\) , откуда

\(t_1=\frac{V_0\sin\alpha}{g}\)

Полное время полета снаряда

\(t=2t_1=\frac{2V_0\sin\alpha}{g}=50\) c.

Высоту подъема снаряда определим из формулы пути равно замедленного движения

\(h=V_{0y}t_1-\frac{gt_1^2}{2}=\frac{V_0^2\sin^2\alpha}{2g}=3060\) м.

Дальность полета определим как

\(S=V_{0x}t=\frac{V_0^2\sin{2\alpha}}{g}=21000\) м.

Задача 2 .

Из точки А свободно падает тело. Одновременно из точки В под углом \(\alpha\) к горизонту бросают другое тело так, чтобы оба тела столкнулись в воздухе. Показать, что угол \(\alpha\) не зависит от начальной скорости \(V_0\) тела, брошенного из точки В, и определить этот угол, если \(\frac{H}{S}=\sqrt3\) . Сопротивлением воздуха пренебречь.

Решение задачи.

Найти: \(\alpha\)

Дано: \(\frac{H}{S}=\sqrt3\)

Свяжем ИСО с точкой В.

Оба тела могут встретиться на линии ОА (см. рис.) в точке С. Разложим скорость \(V_0\) тела, брошенного из точки В, на горизонтальную и вертикальную составляющие:

\(V_{0x}=V_0\cos\alpha\) ; \(V_{0y}=V_0\sin\alpha\) .

Пусть от начала движения до момента встречи пройдет время

\(t=\frac{S}{V_{0x}}=\frac{S}{V_0\cos\alpha}\) .

За это время тело из точки А опуститься на величину

\(H-h=\frac{gt^2}{2}\) ,

а тело из точки В поднимется на высоту

\(h=V_{0y}t-\frac{gt^2}{2}=V_0\sin\alpha{t}-\frac{gt^2}{2}\) .

Решая последние два уравнения совместно, находим

\(H=V_0\sin\alpha{t}\) .

Подставляя сюда ранее найденное время, получим

\(\tan\alpha=\frac{H}{S}=\sqrt3\) ,

т.е. угол бросания не зависит от начальной скорости.

\(\alpha=60^0\)

Задача 3.

С башни брошено тело в горизонтальном направлении со скоростью 40 м/с. Какова скорость тела через 3 с после начала движения? Какой угол образует с плоскостью горизонта вектор скорости тела в этот момент?

Решение задачи.

Найти: \(\alpha\)

Дано: \(V_0=40\) м/с. \(t=3\) c.

Свяжем ИСО с башней.

Тело одновременно участвует в двух движениях: равномерно в горизонтальном направлении со скоростью \(V_0\) и в свободном падении со скоростью \(V_y=gt\) . Тогда полная скорость тела есть

\(V=\sqrt{V_0^2+g^2t^2}=50 м/с.\)

Направление вектора скорости определяется углом \(\alpha\) . Из рисунка видим, что

\(\cos\alpha=\frac{V_0}{V}=\frac{V_0}{\sqrt{V_0^2+g^2t^2}}=0.8\)

\(\alpha=37^0\)

Задача 4.

Два тела брошены вертикально вверх из одной точки одно вслед за другим с интервалом времени, равным \(\Delta{t}\) , с одинаковыми скоростями \(V_0\) . Через какое время \(t\) после бросания первого тела они встретятся?

Решение задачи.

Найти: \(t\)

Дано: \(V_0\) , \(\Delta{t}\)

Из анализа условия задачи, ясно, что первое тело поднимется на максимальную высоту и на спуске встретится со вторым телом. Запишем законы движения тел:

\(h_1=V_0t-\frac{gt^2}{2}\)

\(h_2=V_0(t-\Delta{t})-\frac{g(t-\Delta{t})^2}{2}\) .

В момент встречи \(h_1=h_2\) , откуда сразу получаем

\(t=\frac{V_0}{g}+\frac{\Delta{t}}{2}\)